Do you want to publish a course? Click here

Cloud property trends in hot and ultra-hot giant gas planets (WASP-43b, WASP-103b, WASP-121b, HAT-P-7b, and WASP-18b)

154   0   0.0 ( 0 )
 Added by Christiane Helling
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Ultra-hot Jupiters are the hottest exoplanets discovered so far. Observations begin to provide insight into the composition of their extended atmospheres and their chemical day/night asymmetries. Both are strongly affected by cloud formation. We explore trends in cloud properties for a sample of five giant gas planets: WASP-43b, WASP-18b, HAT-P-7b, WASP-103b, and WASP-121b. This provides a reference frame for cloud properties for the JWST targets WASP-43b and WASP-121b. We further explore chemically inert tracers to observe geometrical asymmetries, and if the location of inner boundary of a 3D GCM matters for the clouds that form. The large day/night temperature differences of ultra-hot Jupiters cause large chemical asymmetries: cloud-free days but cloudy nights, atomic vs. molecular gases and respectively different mean molecular weights, deep thermal ionospheres vs. low-ionised atmospheres, undepleted vs enhanced C/O. WASP-18b, as the heaviest planet in the sample, has the lowest global C/O. The global climate may be considered as similar amongst ultra-hot Jupiters, but different to that of hot gas giants. The local weather, however, is individual for each planet since the local thermodynamic conditions, and hence the local cloud and gas properties, differ. The morning and the evening terminator of ultra-hot Jupiters will carry signatures of their strong chemical asymmetry such that ingress/egress asymmetries can be expected. An increased C/O ratio is a clear sign of cloud formation, making cloud modelling a necessity when utilizing C/O (or other mineral ratios) as tracer for planet formation. The changing geometrical extension of the atmosphere from the day to the nightside may be probed through chemically inert species like helium. Ultra-hot Jupiters are likely to develop deep atmospheric ionospheres which may impact the atmosphere dynamics through MHD processes.

rate research

Read More

We report on four new transiting hot Jupiters discovered by the WASP-South survey. WASP-178b transits a V = 9.9, A1V star with Teff = 9350 +/- 150 K, the second-hottest transit host known. It has a highly bloated radius of 1.81 +/- 0.09 Rjup, in line with the known correlation between high irradiation and large size. With an estimated temperature of 2470 +/- 60 K, the planet is one of the best targets for studying ultra-hot Jupiters that is visible from the Southern hemisphere. The three host stars WASP-184, WASP-185 and WASP-192 are all post-main-sequence G0 stars of ages 4-8 Gyr. The larger stellar radii (1.3-1.7 Msun) mean that the transits are relatively shallow (0.7-0.9%) even though the planets have moderately inflated radii of 1.2-1.3 Rjup. WASP-185b has an eccentric orbit (e = 0.24) and a relatively long orbital period of 9.4 d. A star that is 4.6 arcsec from WASP-185 and 4.4 mag fainter might be physically associated.
We present the discovery of four new transiting hot jupiters, detected mainly from SuperWASP-North and SOPHIE observations. These new planets, WASP-52b, WASP-58b, WASP-59b, and WASP-60b, have orbital periods ranging from 1.7 to 7.9 days, masses between 0.46 and 0.94 M_Jup, and radii between 0.73 and 1.49 R_Jup. Their G1 to K5 dwarf host stars have V magnitudes in the range 11.7-13.0. The depths of the transits are between 0.6 and 2.7%, depending on the target. With their large radii, WASP-52b and 58b are new cases of low-density, inflated planets, whereas WASP-59b is likely to have a large, dense core. WASP-60 shows shallow transits. In the case of WASP-52 we also detected the Rossiter-McLaughlin anomaly via time-resolved spectroscopy of a transit. We measured the sky-projected obliquity lambda = 24 (+17/-9) degrees, indicating that WASP-52b orbits in the same direction as its host star is rotating and that this prograde orbit is slightly misaligned with the stellar equator. These four new planetary systems increase our statistics on hot jupiters, and provide new targets for follow-up studies.
We present the analysis of TESS optical photometry of WASP-121b, which reveal the phase curve of this transiting ultra-hot Jupiter. Its hotspot is located at the substellar point, showing inefficient heat transport from the dayside (2870 K) to the nightside ($<$ 2200 K) at the altitudes probed by TESS. The TESS eclipse depth, measured at the shortest wavelength to date for WASP-121b, confirms the strong deviation from blackbody planetary emission. Our atmospheric retrieval on the complete emission spectrum supports the presence of a temperature inversion, which can be explained by the presence of VO and possibly TiO and FeH. The strong planetary emission at short wavelengths could arise from an H$^{-}$ continuum.
We report the detection of WASP-35b, a planet transiting a metal-poor ([Fe/H] = -0.15) star in the Southern hemisphere, WASP-48b, an inflated planet which may have spun-up its slightly evolved host star of 1.75 R_sun in the Northern hemisphere, and the independent discovery of HAT-P-30b / WASP-51b, a new planet in the Northern hemisphere. Using WASP, RISE, FTS and TRAPPIST photometry, with CORALIE, SOPHIE and NOT spectroscopy, we determine that WASP-35b has a mass of 0.72 +/- 0.06 M_J and radius of 1.32 +/- 0.03 R_J, and orbits with a period of 3.16 days, WASP-48b has a mass of 0.98 +/- 0.09 M_J, radius of 1.67 +/- 0.08 R_J and orbits in 2.14 days, while WASP-51b, with an orbital period of 2.81 days, is found to have a mass of 0.76 +/- 0.05 M_J and radius of 1.42 +/- 0.04 R_J, agreeing with values of 0.71 +/- 0.03 M_J and 1.34 +/- 0.07 R_J reported for HAT-P-30b.
We report three new transiting hot-Jupiter planets discovered from the WASP surveys combined with radial velocities from OHP/SOPHIE and Euler/CORALIE and photometry from Euler and TRAPPIST. All three planets are inflated, with radii 1.7-1.8 Rjup. All orbit hot stars, F5-F7, and all three stars have evolved, post-MS radii (1.7-2.2 Rsun). Thus the three planets, with orbits of 1.8-3.9 d, are among the most irradiated planets known. This reinforces the correlation between inflated planets and stellar irradiation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا