Do you want to publish a course? Click here

Spitzer phase curve observations and circulation models of the inflated ultra-hot Jupiter WASP-76b

106   0   0.0 ( 0 )
 Added by Thaddeus Komacek
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The large radii of many hot Jupiters can only be matched by models that have hot interior adiabats, and recent theoretical work has shown that the interior evolution of hot Jupiters has a significant impact on their atmospheric structure. Due to its inflated radius, low gravity, and ultra-hot equilibrium temperature, WASP-76b is an ideal case study for the impact of internal evolution on observable properties. Hot interiors should most strongly affect the non-irradiated side of the planet, and thus full phase curve observations are critical to ascertain the effect of the interior on the atmospheres of hot Jupiters. In this work, we present the first Spitzer phase curve observations of WASP-76b. We find that WASP-76b has an ultra-hot day side and relatively cold nightside with brightness temperatures of $2471 pm 27~mathrm{K}$/$1518 pm 61~mathrm{K}$ at $3.6~micron$ and $2699 pm 32~mathrm{K}$/$1259 pm 44~mathrm{K}$ at $4.5~micron$, respectively. These results provide evidence for a dayside thermal inversion. Both channels exhibit small phase offsets of $0.68 pm 0.48^{circ}$ at $3.6~micron$ and $0.67 pm 0.2^{circ}$ at $4.5~mumathrm{m}$. We compare our observations to a suite of general circulation models that consider two end-members of interior temperature along with a broad range of frictional drag strengths. Strong frictional drag is necessary to match the small phase offsets and cold nightside temperatures observed. From our suite of cloud-free GCMs, we find that only cases with a cold interior can reproduce the cold nightsides and large phase curve amplitude at $4.5~micron$, hinting that the hot interior adiabat of WASP-76b does not significantly impact its atmospheric dynamics or that clouds blanket its nightside.



rate research

Read More

We present the analysis of TESS optical photometry of WASP-121b, which reveal the phase curve of this transiting ultra-hot Jupiter. Its hotspot is located at the substellar point, showing inefficient heat transport from the dayside (2870 K) to the nightside ($<$ 2200 K) at the altitudes probed by TESS. The TESS eclipse depth, measured at the shortest wavelength to date for WASP-121b, confirms the strong deviation from blackbody planetary emission. Our atmospheric retrieval on the complete emission spectrum supports the presence of a temperature inversion, which can be explained by the presence of VO and possibly TiO and FeH. The strong planetary emission at short wavelengths could arise from an H$^{-}$ continuum.
Recent observations of the ultra-hot Jupiter WASP-76b have revealed a diversity of atmospheric species. Here we present new high-resolution transit spectroscopy of WASP-76b with GRACES at the Gemini North Observatory, serving as a baseline for the Large and Long Program Exploring the Diversity of Exoplanet Atmospheres at High Spectral Resolution (Exoplanets with Gemini Spectroscopy, or ExoGemS for short). With a broad spectral range of $400 - 1050$ nm, these observations allow us to search for a suite of atomic species. We recover absorption features due to neutral sodium (Na I), and report a new detection of the ionized calcium (Ca II) triplet at ~ $850$ nm in the atmosphere of WASP-76b, complementing a previous detection of the Ca II H & K lines. The triplet has line depths of $0.295 pm 0.034$% at ~ $849.2$ nm, $0.574 pm 0.041$% at ~ $854.2$ nm, and $0.454 pm 0.024$% at ~ $866.2$ nm, corresponding to effective radii close to (but within) the planets Roche radius. These measured line depths are significantly larger than those predicted by model LTE and NLTE spectra obtained on the basis of a pressure-temperature profile computed assuming radiative equilibrium. The discrepancy suggests that the layers probed by our observations are either significantly hotter than predicted by radiative equilibrium and/or in a hydrodynamic state. Our results shed light on the exotic atmosphere of this ultra-hot world, and will inform future analyses from the ExoGemS survey.
We report three new transiting hot-Jupiter planets discovered from the WASP surveys combined with radial velocities from OHP/SOPHIE and Euler/CORALIE and photometry from Euler and TRAPPIST. All three planets are inflated, with radii 1.7-1.8 Rjup. All orbit hot stars, F5-F7, and all three stars have evolved, post-MS radii (1.7-2.2 Rsun). Thus the three planets, with orbits of 1.8-3.9 d, are among the most irradiated planets known. This reinforces the correlation between inflated planets and stellar irradiation.
We report the discovery of a new transiting planet from the WASP survey. WASP-135b is a hot Jupiter with a radius of 1.30 pm 0.09 Rjup, a mass of 1.90 pm 0.08 Mjup and an orbital period of 1.401 days. Its host is a Sun-like star, with a G5 spectral type and a mass and radius of 0.98 pm 0.06 Msun and 0.96 pm 0.05 Rsun respectively. The proximity of the planet to its host means that WASP-135b receives high levels of insolation, which may be the cause of its inflated radius. Additionally, we find weak evidence of a transfer of angular momentum from the planet to its star.
109 - J.E. Krick , J. Ingalls , S. Carey 2016
Motivated by a high Spitzer IRAC oversubscription rate, we present a new technique of randomly and sparsely sampling phase curves of hot Jupiters. Snapshot phase curves are enabled by technical advances in precision pointing as well as careful characterization of a portion of the central pixel on the array. This method allows for observations which are a factor of roughly two more efficient than full phase curve observations, and are furthermore easier to insert into the Spitzer observing schedule. We present our pilot study from this program using the exoplanet WASP-14b. Data of this system were taken both as a sparsely sampled phase curve as well as a staring mode phase curve. Both datasets as well as snapshot style observations of a calibration star are used to validate this technique. By fitting our WASP-14b phase snapshot dataset, we successfully recover physical parameters for the transit and eclipse depths as well as amplitude and maximum and minimum of the phase curve shape of this slightly eccentric hot Jupiter. We place a limit on the potential phase to phase variation of these parameters since our data are taken over many phases over the course of a year. We see no evidence for eclipse depth variations compared to other published WASP-14b eclipse depths over a 3.5 year baseline.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا