Do you want to publish a course? Click here

Competing advection decelerates droplet evaporation on heated surfaces

156   0   0.0 ( 0 )
 Added by Purbarun Dhar
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this article we report the atypical and anomalous evaporation kinetics of saline sessile droplets on surfaces with elevated temperatures. In a previous we showed that saline sessile droplets evaporate faster compared to water droplets when the substrates are not heated. In the present study we discover that in the case of heated surfaces, the saline droplets evaporate slower than the water counterpart, thereby posing a counter-intuitive phenomenon. The reduction in the evaporation rates is directly dependent on the salt concentration and the surface wettability. Natural convection around the droplet and thermal modulation of surface tension is found to be inadequate to explain the mechanisms. Flow visualisations using particle image velocimetry PIV reveals that the morphed advection within the saline droplets is a probable reason behind the arrested evaporation. Infrared thermography is employed to map the thermal state of the droplets. A thermosolutal Marangoni based scaling analysis is put forward. It is observed that the Marangoni and internal advection borne of thermal and solutal gradients are competitive, thereby leading to the overall decay of internal circulation velocity, which reduces the evaporation rates. The theoretically obtained advection velocities conform to the experimental results. This study sheds rich insight on a novel yet anomalous species transport behaviour in saline droplets.



rate research

Read More

The article experimentally reveals and theoretically establishes the influence of electric fields on the evaporation kinetics of pendant droplets. It is shown that the evaporation kinetics of saline pendant droplets can be augmented by the application of an external alternating electric field. The evaporation behaviour is modulated by an increase in the field strength and frequency. The classical diffusion driven evaporation model is found insufficient in predicting the improved evaporation rates. The change in surface tension due to field constraint is insufficient for explaining the observed physics. Consequently, the internal hydrodynamics of the droplet is probed employing particle image velocimetry. It is revealed that the electric field induces enhanced internal advection, which improves the evaporation rates. A scaled analytical model is proposed to understand the role of internal electrohydrodynamics, electrothermal and the electrosolutal effects. Stability maps reveal that the advection is caused nearly equally by the electrosolutal and electrothermal effects within the droplet. The model is able to illustrate the influence played by the governing thermal and solutal Marangoni number, the electro Prandtl and electro Schmidt number, and the associated Electrohydrodynamic number. The magnitude of the internal circulation can be well predicted by the proposed model, which validates the proposed mechanism.
Modification and control over the vaporization kinetics of microfluidic droplets may have strong utilitarian implications in several scientific and technological applications. The article reports the control over the vaporization kinetics of pendent droplets under the influence of competing internal electrohydrodynamic and ferrohydrodynamic advection. Experimental and theoretical studies are performed and the morphing of vaporization kinetics of electrically conducting and paramagnetic fluid droplets using orthogonal electric and magnetic stimuli is established. Analysis of the observations reveals that the electric field has a domineering influence compared to the magnetic field. While the magnetic field is noted to aid the vaporization rates, the electric field is observed to decelerate the same. Neither the vapour diffusion dominated kinetics nor the field induced modified surface tension can explain the observed vaporization behaviours. Velocimetry within the droplet shows largely modified internal ferro and electrohydrodynamic advection, which is noted to be the crux of the mechanism towards modified vaporization rates. A mathematical treatment is proposed and takes into account the roles played by the governing Hartmann, electrohydrodynamic, interaction, the thermal and solutal Marangoni, and the electro and magneto Prandtl and Schmidt numbers. It is observed that the morphing of the thermal and solutal Marangoni numbers by the electromagnetic interaction number plays the dominant role towards morphing the advection dynamics. The model is able to predict the internal advection velocities accurately. The findings may hold significant promise towards smart control and tuning of vaporization kinetics in microhydrodynamics transport paradigms.
The article reports droplet evaporation kinetics on inclined substrates. Comprehensive experimental and theoretical analyses of the droplet evaporation behaviour for different substrate declination, wettability and temperatures have been presented. Sessile droplets with substrate declination exhibit distorted shape and evaporate at different rates compared to droplets on the same horizontal substrate and is characterized by more often changes in regimes of evaporation. The slip stick and jump stick modes are prominent during evaporation. For droplets on inclined substrates, the evaporative flux is also asymmetric and governed by the initial contact angle dissimilarity. Due to smaller contact angle at the rear contact line, it is the zone of a higher evaporative flux. Particle image velocimetry shows the increased internal circulation velocity within the inclined droplets. Asymmetry in the evaporative flux leads to higher temperature gradients, which ultimately enhances the thermal Marangoni circulation near the rear of the droplet where the evaporative flux is highest. A model is adopted to predict the thermal Marangoni advection velocity, and good match is obtained. The declination angle and imposed thermal conditions interplay and lead to morphed evaporation kinetics than droplets on horizontal heated surfaces. Even weak movements of the TL alter the evaporation dynamics significantly, by changing the shape of the droplet from ideally elliptical to almost spherical cap, which ultimately reduces the evaporative flux. The life time of the droplet is modelled by modifying available models for non-heated substrate, to account for the shape asymmetry. The present findings may find strong implications towards microscale thermo-hydrodynamics.
The transport of small quantities of liquid on a solid surface is inhibited by the resistance to motion caused by the contact between the liquid and the solid. To overcome such resistance, motion can be externally driven through gradients in electric fields, but these all inconveniently involve the input of external energy. Alternatively, gradients in physical shape and wettability - the conical shape of cactus spines to create self-propelled motion. However, such self-propelled motion to date has limited success in overcoming the inherent resistance to motion of the liquid contact with the solid. Here we propose a simple solution in the form of shaped-liquid surface, where solid topographic structures at one length scale provides the base for a smaller length-scale liquid conformal layer. This dual-length scale render possible slippery surfaces with superhydrophobic properties. Combined to an heterogeneous topography, it provides a gradient in liquid-on-liquid wettability with minimal resistance to motion and long range directional self-propelled droplet transport. Moreover, the liquid-liquid contact enables impacting droplets to be captured and transported, even when the substrate is inverted. These design principles are highly beneficial for droplet transport in microfluidics, self-cleaning surfaces, fog harvesting and in heat transfer.
The distribution of liquid water in ice-free clouds determines their radiative properties, a significant source of uncertainty in weather and climate models. Evaporation and turbulent mixing cause a cloud to display large variations in droplet-number density, but quite small variations in droplet size [Beals et al. (2015)]. Yet direct numerical simulations of the joint effect of evaporation and mixing near the cloud edge predict quite different behaviors, and it remains an open question how to reconcile these results with the experimental findings. To infer the history of mixing and evaporation from observational snapshots of droplets in clouds is challenging because clouds are transient systems. We formulated a statistical model that provides a reliable description of the evaporation-mixing process as seen in direct numerical simulations, and allows to infer important aspects of the history of observed droplet populations, highlighting the key mechanisms at work, and explaining the differences between observations and simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا