Do you want to publish a course? Click here

Neutrino spin and spin-flavor oscillations in matter currents and magnetic fields

69   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

After a brief history of two known types of neutrino mixing and oscillations, including neutrino spin and spin-flavour oscillations in the transversal magnetic field, we perform systematic study of a new phenomenon of neutrino spin and spin-flavour oscillations engendered by the transversal matter currents on the bases of the developed quantum treatment of the phenomenon. Possibilities for the resonance amplification of these new types of oscillations by the longitudinal matter currents and longitudinal magnetic fields are analyzed. We also consider modifications of the oscillation probabilities due to possible arbitrary orientation of the magnetic field vector ${bf B}$ and the matter velocity ${bf v}$.



rate research

Read More

We develop the approach to the problem of neutrino oscillations in a magnetic field introduced in cite{Popov:2019nkr} and extend it to the case of three neutrino generations. The theoretical framework suitable for computation of the Dirac neutrino spin, flavour and spin-flavour oscillations probabilities in a magnetic field is given. It is shown that there is an entanglement between neutrino flavour and spin oscillations and in the general case it is not possible to consider these two types of neutrino oscillations separately. The closed analytic expressions for the probabilities of oscillations are obtained accounting for the normal and inverted hierarchies and the possible effect of CP violation. In particular, it is shown that the probabilities of the
105 - Maxim Dvornikov 2019
We study spin oscillations of massive Dirac neutrinos in background matter, electromagnetic and gravitational fields. First, using the Dirac equation for a neutrino interacting with the external fields in curved spacetime, we rederive the quasiclassical equation for the neutrino spin evolution, which was proposed previously basing on principles of the general covariance. Then, we apply this result for the description of neutrino spin oscillations in nonmoving and unpolarized matter under the influence of a constant transverse magnetic field and a gravitational wave. We derive the effective Schrodinger equation for neutrino oscillations in these external fields and solve it numerically. Choosing realistic parameters of external fields, we show that the parametric resonance can take place in spin oscillations of low energy neutrinos. Some astrophysical applications are briefly discussed.
We simulate neutrino-antineutrino oscillations caused by strong magnetic fields in dense matter. With the strong magnetic fields and large neutrino magnetic moments, Majorana neutrinos can reach flavor equilibrium. We find that the flavor equilibration of neutrino-antineutrino oscillations is sensitive to the values of the baryon density and the electron fraction inside the matter. The neutrino-antineutrino oscillations are suppressed in the case of the large baryon density in neutron (proton)-rich matter. On the other hand, the flavor equilibration occurs when the electron fraction is close to $0.5$ even in the large baryon density. From the simulations, we propose a necessary condition for the equilibration of neutrino-antineutrino oscillations in dense matter. We also study whether such necessary condition is satisfied near the proto-neutron star by using results of neutrino hydrodynamic simulations of core-collapse supernovae. In our explosion model, the flavor equilibration would be possible if the magnetic field on the surface of the proto-neutron star is larger than $10^{14}$ G which is the typical value of the magnetic fields of magnetars.
90 - Maxim Dvornikov 2019
We review the application of the relativistic quantum mechanics method for the description of neutrino oscillations for the studies of spin-flavor oscillations in background matter under the influence of a plane electromagnetic wave. Basing on the new exact solution of the Dirac-Pauli equation for a massive neutrino in the given external fields, we derive the transition probabilities for spin and spin-flavor oscillations. The obtained expressions are analyzed for different types of the neutrino magnetic moments. Our results are compared with findings of other authors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا