The Multi-Blade is a Boron-10-based neutron detector designed for neutron reflectometers and developed for the two instruments (Estia and FREIA) planned for the European Spallation Source in Sweden. A reflectometry demonstrator has been installed at the AMOR reflectometer at the Paul Scherrer Institut (PSI - Switzerland). The setup exploits the Selene guide concept and it can be considered a scaled-down demonstrator of Estia. The results of these tests are discussed. It will be shown how the characteristics of the Multi-Blade detector are features that allow the focusing reflectometry operation mode. Additionally the performance of the Multi-Blade, in terms of rate capability, exceeds current state-of-the-art technology. The improvements with respect to the previous prototypes are also highlighted; from background considerations to the linear and angular uniformity response of the detector.
The Multi-Blade is a Boron-10-based gaseous thermal neutron detector developed to face the challenge arising in neutron reflectometry at neutron sources. Neutron reflectometers are challenging instruments in terms of instantaneous counting rate and spatial resolution. This detector has been designed according to the requirements given by the reflectometers at the European Spallation Source (ESS) in Sweden. The Multi-Blade has been installed and tested on the CRISP reflectometer at the ISIS neutron and muon source in UK. The results on the detailed detector characterization are discussed in this manuscript.
The Multi-Blade is a Boron-10-based gaseous detector developed for neutron reflectometry instruments at the European Spallation Source (ESS) in Sweden. The main challenges for neutron reflectometry detectors are the instantaneous counting rate and spatial resolution. The Multi-Blade has been tested on the CRISP reflectometer at the ISIS neutron and muon source in UK. A campaign of scientific measurements has been performed to study the Multi-Blade response in real instrumental conditions. The results of these tests are discussed in this manuscript.
The European Spallation Source (ESS) is the worlds next generation spallation-based neutron source. The research conducted at ESS will yield in the discovery and development of new materials including the fields of manufacturing, pharmaceuticals, aerospace, engines, plastics, energy, telecommunications, transportation, information technology and biotechnology. The spallation source will deliver an unprecedented neutron flux. In particular, the reflectometers selected for construction, ESTIA and FREIA, have to fulfill challenging requirements. Local incident peak rate can reach 10$^5$~Hz/mm$^2$. For new science to be addressed, the spatial resolution is aimed to be less than 1 mm with a desired scattering of 10$^{-4}$ (peak-to-tail ratio). The latter requirement is approximately two orders of magnitude better than the current state-of-the-art detectors. The main aim of this work is to quantify the cumulative contribution of various detector components to the scattering of neutrons and to prove that the respective effect is within the requirements set for the Multi-Blade detector by the ESS reflectometers. To this end, different sets of geometry and beam parameters are investigated, with primary focus on the cathode coating and the detector window thickness.
In the last few years many detector technologies for thermal neutron detection have been developed in order to face the shortage of 3He, which is now much less available and more expensive. Moreover the 3He-based detectors can not fulfil the requirements in performance, e.g. the spatial resolution and the counting rate capability needed for the new instruments. The Boron-10-based gaseous detectors have been proposed as a suitable choice. This and other alternatives technologies are being developed at ESS. Higher intensities mean higher signals but higher background as well. The signal-to-background ratio is an important feature to study, in particular the gamma-ray and the fast neutron contributions. This paper investigates, for the first time, the fast neutrons sensitivity of 10B-based thermal neutron detector. It presents the study of the detector response as a function of energy threshold and the underlying physical mechanisms. The latter are explained with the help of theoretical considerations and simulations.
The boron-10 based Multi-Grid detector is being developed as an alternative to helium-3 based neutron detectors. At the European Spallation Source, the detector will be used for time-of-flight neutron spectroscopy at cold to thermal neutron energies. The objective of this work is to investigate fine time- and energy-resolved effects of the Multi-Grid detector, down to a few $mu$eV, while comparing it to the performance of a typical helium-3 tube. Furthermore, it is to characterize differences between the detector technologies in terms of internal scattering, as well as the time reconstruction of ~ $mu$s short neutron pulses. The data were taken at the Helmholtz Zentrum Berlin, where the Multi-Grid detector and a helium-3 tube were installed at the ESS test beamline, V20. Using a Fermi-chopper, the neutron beam of the reactor was chopped into a few tens of $mu$s wide pulses before reaching the detector, located a few tens of cm downstream. The data of the measurements show an agreement between the derived and calculated neutron detection efficiency curve. The data also provide fine details on the effect of internal scattering, and how it can be reduced. For the first time, the chopper resolution was comparable to the timing resolution of the Multi-Grid detector. This allowed a detailed study of time- and energy resolved effects, as well as a comparison with a typical helium-3 tube.
G. Mauri
,I. Apostolidis
,M. J. Christensen
.
(2020)
.
"The Multi-Blade Boron-10-based neutron detector performance using a focusing reflectometer"
.
Francesco Piscitelli Dr
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا