Do you want to publish a course? Click here

Investigation of neutron scattering in the Multi-Blade detector with Geant4 simulations

76   0   0.0 ( 0 )
 Added by Kalliopi Kanaki
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The European Spallation Source (ESS) is the worlds next generation spallation-based neutron source. The research conducted at ESS will yield in the discovery and development of new materials including the fields of manufacturing, pharmaceuticals, aerospace, engines, plastics, energy, telecommunications, transportation, information technology and biotechnology. The spallation source will deliver an unprecedented neutron flux. In particular, the reflectometers selected for construction, ESTIA and FREIA, have to fulfill challenging requirements. Local incident peak rate can reach 10$^5$~Hz/mm$^2$. For new science to be addressed, the spatial resolution is aimed to be less than 1 mm with a desired scattering of 10$^{-4}$ (peak-to-tail ratio). The latter requirement is approximately two orders of magnitude better than the current state-of-the-art detectors. The main aim of this work is to quantify the cumulative contribution of various detector components to the scattering of neutrons and to prove that the respective effect is within the requirements set for the Multi-Blade detector by the ESS reflectometers. To this end, different sets of geometry and beam parameters are investigated, with primary focus on the cathode coating and the detector window thickness.



rate research

Read More

The Multi-Blade is a Boron-10-based gaseous detector developed for neutron reflectometry instruments at the European Spallation Source (ESS) in Sweden. The main challenges for neutron reflectometry detectors are the instantaneous counting rate and spatial resolution. The Multi-Blade has been tested on the CRISP reflectometer at the ISIS neutron and muon source in UK. A campaign of scientific measurements has been performed to study the Multi-Blade response in real instrumental conditions. The results of these tests are discussed in this manuscript.
The Multi-Blade is a Boron-10-based neutron detector designed for neutron reflectometers and developed for the two instruments (Estia and FREIA) planned for the European Spallation Source in Sweden. A reflectometry demonstrator has been installed at the AMOR reflectometer at the Paul Scherrer Institut (PSI - Switzerland). The setup exploits the Selene guide concept and it can be considered a scaled-down demonstrator of Estia. The results of these tests are discussed. It will be shown how the characteristics of the Multi-Blade detector are features that allow the focusing reflectometry operation mode. Additionally the performance of the Multi-Blade, in terms of rate capability, exceeds current state-of-the-art technology. The improvements with respect to the previous prototypes are also highlighted; from background considerations to the linear and angular uniformity response of the detector.
The Multi-Blade is a Boron-10-based gaseous thermal neutron detector developed to face the challenge arising in neutron reflectometry at neutron sources. Neutron reflectometers are challenging instruments in terms of instantaneous counting rate and spatial resolution. This detector has been designed according to the requirements given by the reflectometers at the European Spallation Source (ESS) in Sweden. The Multi-Blade has been installed and tested on the CRISP reflectometer at the ISIS neutron and muon source in UK. The results on the detailed detector characterization are discussed in this manuscript.
281 - M. Klausz 2019
The last decade has witnessed the development of several alternative neutron detector technologies, as a consequence of upcoming neutron sources and upgrades, as well the world-wide shortage of $^3$He. One branch of development is the family of $^{10}$B-based gaseous detectors. This work focuses on the boron coated straws (BCS) by Proportional Technologies Inc., a commercial solution designed for use in homeland security and neutron science. A detailed Geant4 simulation study of the BCS is presented, which investigates various aspects of the detector performance, e.g. efficiency, activation, absorption and the impact of scattering on the measured signal. The suitability of the BCS detector for Small Angle Neutron Scattering (SANS), direct chopper spectrometry and imaging is discussed.
107 - S. A. Uzunyan 2016
Northern Illinois University in collaboration with Fermi National Accelerator Laboratory (FNAL) and Delhi University has been designing and building a proton CT scanner for applications in proton treatment planning. The Phase II proton CT scanner consists of eight planes of tracking detectors with two X and two Y coordinate measurements both before and after the patient. In addition, a range stack detector consisting of a stack of thin scintillator tiles, arranged in twelve eight-tile frames, is used to determine the water equivalent path length (WEPL) of each track through the patient. The X-Y coordinates and WEPL are required input for image reconstruction software to find the relative (proton) stopping powers (RSP) value of each voxel in the patient and generate a corresponding 3D image. In this Note we describe tests conducted in 2015 at the proton beam at the Central DuPage Hospital in Warrenville, IL, focusing on the range stack calibration procedure and comparisons with the GEANT~4 range stack simulation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا