Do you want to publish a course? Click here

Anomalous thermal broadening from an infrared catastrophe in two-dimensional quantum antiferromagnets

64   0   0.0 ( 0 )
 Added by Matthew O'Brien
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The nature of quasiparticles in 2D quantum antiferromagnets at finite temperature remains an open question despite decades of theoretical work. In particular, it is not fully understood how long wavelength excitations contribute to significant broadening of the experimentally observable spectrum. Motivated by this problem, we consider the $XY$ model of easy-plane antiferromagnets, and compute the dynamic structure factor by direct summation of diagrams. In doing so, we find that non-interacting quasiparticles with infinite lifetimes can still lead to a broad response. This forms the basis for a new paradigm describing the interaction of experimental probes with a physical system, where broadening is due neither to the lifetime, nor to the emergence of fractional quasiparticles. Instead, strong fluctuations drive the probe to absorb and radiate an infinite number of arbitrarily low energy quasiparticles, leading us to draw parallels with the infrared catastrophe in quantum electrodynamics.

rate research

Read More

We study the Neel-paramagnetic quantum phase transition in two-dimensional dimerized $S=1/2$ Heisenberg antiferromagnets using finite-size scaling of quantum Monte Carlo data. We resolve the long standing issue of the role of cubic interactions arising in the bond-operator representation when the dimer pattern lacks a certain symmetry. We find non-monotonic (monotonic) size dependence in the staggered (columnar) dimerized model, where cubic interactions are (are not) present. We conclude that there is an irrelevant field in the staggered model that is not present in the columnar case, but, at variance with previous claims, it is not the leading irrelevant field. The new exponent is $omega_2 approx 1.25$ and the prefactor of the correction $L^{-omega_2}$ is large and comes with a different sign from that of the formally leading conventional correction with exponent $omega_1 approx 0.78$. Our study highlights the possibility of competing scaling corrections at quantum critical points.
110 - C. M. Varma 2015
Quasi-two dimensional itinerant fermions in the Anti-Ferro-Magnetic (AFM) quantum-critical region of their phase diagram, such as in the Fe-based superconductors or in some of the heavy-fermion compounds, exhibit a resistivity varying linearly with temperature and a contribution to specific heat or thermopower proportional to $T ln T$. It is shown here that a generic model of itinerant AFM can be canonically transformed such that its critical fluctuations around the AFM-vector $Q$ can be obtained from the fluctuations in the long wave-length limit of a dissipative quantum XY model. The fluctuations of the dissipative quantum XY model in 2D have been evaluated recently and in a large regime of parameters, they are determined, not by renormalized spin-fluctuations but by topological excitations. In this regime, the fluctuations are separable in their spatial and temporal dependence and have a dynamical critical exponent $z =infty.$ The time dependence gives $omega/T$-scaling at criticality. The observed resistivity and entropy then follow directly. Several predictions to test the theory are also given.
Spontaneous symmetry breaking is deeply related to dimensionality of system. The Neel order going with spontaneous breaking of $U(1)$ symmetry is safely allowed at any temperature for three-dimensional systems but allowed only at zero temperature for purely two-dimensional systems. We closely investigate how smoothly the ordering process of the three-dimensional system is modulated into that of the two-dimensional one with reduction of dimensionality, considering spatially anisotropic quantum antiferromagnets. We first show that the Neel temperature is kept finite even in the two-dimensional limit although the Neel order is greatly suppressed for low-dimensionality. This feature of the Neel temperature is highly nontrivial, which dictates how the order parameter is squashed under the reduction of dimensionality. Next we investigate this dimensional modulation of the order parameter. We develop our argument taking as example a coupled spin-ladder system relevant for experimental studies. The ordering process is investigated multidirectionally using theoretical techniques of a mean-field method combined with analytical (exact solutions of quantum field theories) or numerial (density-matrix renormalization-group) method, a variational method, a renormalization-group study, linear spin-wave theory, and quantum Monte-Carlo simulation. We show that these methods independent of each other lead to the same conclusion about the dimensional modulation.
145 - C.M. Varma , Lijun Zhu , 2015
We re-examine the experimental results for the magnetic response function $chi({bf q}, E, T)$, for ${bf q}$ around the anti-ferromagnetic vectors ${bf Q}$, in the quantum-critical region, obtained by inelastic neutron scattering, on an Fe-based superconductor, and on a heavy Fermion compound. The motivation is to compare the results with a recent theory, which shows that the fluctuations in a generic anti-ferromagnetic model for itinerant fermions map to those in the universality class of the dissipative quantum-XY model. The quantum-critical fluctuations in this model, in a range of parameters, are given by the correlations of spatial and of temporal topological defects. The theory predicts a $chi({bf q}, E, T)$ (i) which is a separable function of $({bf q -Q})$ and of ($E$,$T$), (ii) at crticality, the energy dependent part is $propto tanh (E/2T)$ below a cut-off energy, (iii) the correlation time departs from its infinite value at criticality on the disordered side by an essential singularity, and (iv) the correlation length depends logarithmically on the correlation time, so that the dynamical critical exponent $z$ is $infty$ . The limited existing experimental results are found to be consistent with the first two unusual predictions from which the linear dependence of the resistivity on T and the $T ln T$ dependence of the entropy also follow. More experiments are suggested, especially to test the theory of variations on the correlation time and length on the departure from criticality.
Counterintuitive order-disorder phenomena emerging in antiferromagnetically coupled spin systems have been reported in various studies. Here we perform a systematic effective field theory analysis of two-dimensional bipartite quantum Heisenberg antiferromagnets subjected to either mutually aligned -- or mutually orthogonal -- magnetic and staggered fields. Remarkably, in the aligned configuration, the finite-temperature uniform magnetization $M_T$ grows as temperature rises. Even more intriguing, in the orthogonal configuration, $M_T$ first drops, goes through a minimum, and then increases as temperature rises. Unmasking the effect of the magnetic field, we furthermore demonstrate that the finite-temperature staggered magnetization $M^H_s$ and entropy density -- both exhibiting non-monotonic temperature dependence -- are correlated. Interestingly, in the orthogonal case, $M^H_s$ presents a maximum, whereas in mutually aligned magnetic and staggered fields, $M^H_s$ goes through a minimum. The different behavior can be traced back to the existence of an easy XY-plane that is induced by the magnetic field in the orthogonal configuration.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا