Do you want to publish a course? Click here

Quantum Criticality in Quasi-Two Dimensional Itinerant Antiferromagnets

152   0   0.0 ( 0 )
 Added by Chandra Varma
 Publication date 2015
  fields Physics
and research's language is English
 Authors C. M. Varma




Ask ChatGPT about the research

Quasi-two dimensional itinerant fermions in the Anti-Ferro-Magnetic (AFM) quantum-critical region of their phase diagram, such as in the Fe-based superconductors or in some of the heavy-fermion compounds, exhibit a resistivity varying linearly with temperature and a contribution to specific heat or thermopower proportional to $T ln T$. It is shown here that a generic model of itinerant AFM can be canonically transformed such that its critical fluctuations around the AFM-vector $Q$ can be obtained from the fluctuations in the long wave-length limit of a dissipative quantum XY model. The fluctuations of the dissipative quantum XY model in 2D have been evaluated recently and in a large regime of parameters, they are determined, not by renormalized spin-fluctuations but by topological excitations. In this regime, the fluctuations are separable in their spatial and temporal dependence and have a dynamical critical exponent $z =infty.$ The time dependence gives $omega/T$-scaling at criticality. The observed resistivity and entropy then follow directly. Several predictions to test the theory are also given.



rate research

Read More

178 - C.M. Varma , Lijun Zhu , 2015
We re-examine the experimental results for the magnetic response function $chi({bf q}, E, T)$, for ${bf q}$ around the anti-ferromagnetic vectors ${bf Q}$, in the quantum-critical region, obtained by inelastic neutron scattering, on an Fe-based superconductor, and on a heavy Fermion compound. The motivation is to compare the results with a recent theory, which shows that the fluctuations in a generic anti-ferromagnetic model for itinerant fermions map to those in the universality class of the dissipative quantum-XY model. The quantum-critical fluctuations in this model, in a range of parameters, are given by the correlations of spatial and of temporal topological defects. The theory predicts a $chi({bf q}, E, T)$ (i) which is a separable function of $({bf q -Q})$ and of ($E$,$T$), (ii) at crticality, the energy dependent part is $propto tanh (E/2T)$ below a cut-off energy, (iii) the correlation time departs from its infinite value at criticality on the disordered side by an essential singularity, and (iv) the correlation length depends logarithmically on the correlation time, so that the dynamical critical exponent $z$ is $infty$ . The limited existing experimental results are found to be consistent with the first two unusual predictions from which the linear dependence of the resistivity on T and the $T ln T$ dependence of the entropy also follow. More experiments are suggested, especially to test the theory of variations on the correlation time and length on the departure from criticality.
279 - Bitan Roy , Pallab Goswami , 2017
We analyze emergent quantum multi-criticality for strongly interacting, massless Dirac fermions in two spatial dimensions ($d=2$) within the framework of Gross-Neveu-Yukawa models, by considering the competing order parameters that give rise to fully gapped (insulating or superconducting) ground states. We focus only on those competing orders, which can be rotated into each other by generators of an exact or emergent chiral symmetry of massless Dirac fermions, and break $O(S_1)$ and $O(S_2)$ symmetries in the ordered phase. Performing a renormalization group analysis by using the $epsilon=(3-d)$ expansion scheme, we show that all the coupling constants in the critical hyperplane flow toward a new attractive fixed point, supporting an emph{enlarged} $O(S_1+S_2)$ chiral symmetry. Such a fixed point acts as an exotic quantum multi-critical point (MCP), governing the emph{continuous} semimetal-insulator as well as insulator-insulator (for example antiferromagnet to valence bond solid) quantum phase transitions. In comparison with the lower symmetric semimetal-insulator quantum critical points, possessing either $O(S_1)$ or $O(S_2)$ chiral symmetry, the MCP displays enhanced correlation length exponents, and anomalous scaling dimensions for both fermionic and bosonic fields. We discuss the scaling properties of the ratio of bosonic and fermionic masses, and the increased dc resistivity at the MCP. By computing the scaling dimensions of different local fermion bilinears in the particle-hole channel, we establish that most of the four fermion operators or generalized density-density correlation functions display faster power law decays at the MCP compared to the free fermion and lower symmetric itinerant quantum critical points. Possible generalization of this scenario to higher dimensional Dirac fermions is also outlined.
Spontaneous symmetry breaking is deeply related to dimensionality of system. The Neel order going with spontaneous breaking of $U(1)$ symmetry is safely allowed at any temperature for three-dimensional systems but allowed only at zero temperature for purely two-dimensional systems. We closely investigate how smoothly the ordering process of the three-dimensional system is modulated into that of the two-dimensional one with reduction of dimensionality, considering spatially anisotropic quantum antiferromagnets. We first show that the Neel temperature is kept finite even in the two-dimensional limit although the Neel order is greatly suppressed for low-dimensionality. This feature of the Neel temperature is highly nontrivial, which dictates how the order parameter is squashed under the reduction of dimensionality. Next we investigate this dimensional modulation of the order parameter. We develop our argument taking as example a coupled spin-ladder system relevant for experimental studies. The ordering process is investigated multidirectionally using theoretical techniques of a mean-field method combined with analytical (exact solutions of quantum field theories) or numerial (density-matrix renormalization-group) method, a variational method, a renormalization-group study, linear spin-wave theory, and quantum Monte-Carlo simulation. We show that these methods independent of each other lead to the same conclusion about the dimensional modulation.
Although the isotope effect in superconducting materials is well-documented, changes in the magnetic properties of antiferromagnets due to isotopic substitution are seldom discussed and remain poorly understood. This is perhaps surprising given the possible link between the quasi-two-dimensional (Q2D) antiferromagnetic and superconducting phases of the layered cuprates. Here we report the experimental observation of shifts in the N{e}el temperature and critical magnetic fields ($Delta T_{rm N}/T_{rm N}approx 4%$; $Delta B_{rm c}/B_{rm c}approx 4%$) in a Q2D organic molecular antiferromagnets on substitution of hydrogen for deuterium. These compounds are characterized by strong hydrogen bonds through which the dominant superexchange is mediated. We evaluate how the in-plane and inter-plane exchange energies evolve as the hydrogens on different ligands are substituted, and suggest a possible mechanism for this effect in terms of the relative exchange efficiency of hydrogen and deuterium bonds.
By means of nuclear spin-lattice relaxation rate 1/T1, we follow the spin dynamics as a function of the applied magnetic field in two gapped one-dimensional quantum antiferromagnets: the anisotropic spin-chain system NiCl2-4SC(NH2)2 and the spin-ladder system (C5H12N)2CuBr4. In both systems, spin excitations are confirmed to evolve from magnons in the gapped state to spinons in the gapples Tomonaga-Luttinger-liquid state. In between, 1/T1 exhibits a pronounced, continuous variation, which is shown to scale in accordance with quantum criticality. We extract the critical exponent for 1/T1, compare it to the theory, and show that this behavior is identical in both studied systems, thus demonstrating the universality of quantum critical behavior.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا