Do you want to publish a course? Click here

Chemistry under EUV Irradiation of H$_2$-CO-N$_2$ Gas Mixtures: Implications for Photochemistry in the Outer CSE of Evolved Stars

66   0   0.0 ( 0 )
 Added by Jeremy Bourgalais
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

{CircumStellar Envelopes (CSEs) of stars are complex chemical objects for which theoretical models encounter difficulties in elaborating a comprehensive overview of the occurring chemical processes. Along with photodissociation, ion-neutral reactions and dissociative recombination might play an important role in controlling molecular growth in outer CSEs. The aim of this work is to provide experimental insights into pathways of photochemistry-driven molecular growth within outer CSEs to draw a more complete picture of the chemical processes occurring within these molecule-rich environments. A simplified CSE environment was therefore reproduced in the laboratory through gas-phase experiments exposing relevant gas mixtures to an Extreme UltraViolet (EUV) photon source. This photochemical reactor should ultimately allow us to investigate chemical processes and their resulting products occurring under conditions akin to outer CSEs. We used a recently developed EUV lamp coupled to the APSIS photochemical cell to irradiate CSE relevant gas mixtures of H$_2$, CO and N$_2$, at one wavelength, 73.6 nm. The detection and identification of chemical species in the photochemical reactor was achieved through in-situ mass spectrometry analysis of neutral and cationic molecules. We find that exposing CO-N$_2$-H$_2$ gas mixtures to EUV photons at 73.6 nm induces photochemical reactions that yield the formation of complex, neutral and ionic species. Our work shows that N$_2$H$^+$ can be formed through photochemistry along with highly oxygenated ion molecules like HCO$^+$ in CSE environments. We also observe neutral N-rich organic species including triazole and aromatic molecules. These results confirm the suitability of our experimental setting to investigate photochemical reactions and provide fundamental insights into the mechanisms of molecular growth in the outer CSEs.

rate research

Read More

Snowlines of major volatiles regulate the gas and solid C/N/O ratios in the planet-forming midplanes of protoplanetary disks. Snow surfaces are the 2D extensions of snowlines in the outer disk regions, where radiative heating results in a decreasing temperature with disk height. CO and N$_2$ are two of the most abundant carriers of C, N and O. N$_2$H$^+$ can be used to probe the snow surfaces of both molecules, because it is destroyed by CO and formed from N$_2$. Here we present Atacama Large Millimeter/submillimeter Array (ALMA) observations of N$_2$H$^+$ at 0.2$$-0.4$$ resolution in the disks around LkCa 15, GM Aur, DM Tau, V4046 Sgr, AS 209, and IM Lup. We find two distinctive emission morphologies: N$_2$H$^+$ is either present in a bright, narrow ring surrounded by extended tenuous emission, or in a broad ring. These emission patterns can be explained by two different kinds of vertical temperature structures. Bright, narrow N$_2$H$^+$ rings are expected in disks with a thick Vertically Isothermal Region above the Midplane (VIRaM) layer (LkCa 15, GM Aur, DM Tau) where the N$_2$H$^+$ emission peaks between the CO and N$_2$ snowlines. Broad N$_2$H$^+$ rings come from disks with a thin VIRaM layer (V4046 Sgr, AS 209, IM Lup). We use a simple model to extract the first sets of CO and N$_2$ snowline pairs and corresponding freeze-out temperatures towards the disks with a thick VIRaM layer. The results reveal a range of N$_2$ and CO snowline radii towards stars of similar spectral type, demonstrating the need for empirically determined snowlines in disks.
Context. Studying gas chemistry in protoplanetary disks is key to understanding the process of planet formation. Sulfur chemistry in particular is poorly understood in interstellar environments, and the location of the main reservoirs remains unknown. Protoplanetary disks in Taurus are ideal targets for studying the evolution of the composition of planet forming systems. Aims. We aim to elucidate the chemical origin of sulfur-bearing molecular emission in protoplanetary disks, with a special focus on H$_2$S emission, and to identify candidate species that could become the main molecular sulfur reservoirs in protoplanetary systems. Methods. We used IRAM 30m observations of nine gas-rich young stellar objects (YSOs) in Taurus to perform a survey of sulfur-bearing and oxygen-bearing molecular species. In this paper we present our results for the CS 3-2 ($ u_0$ = 146.969 GHz), H$_2$CO 2$_{11}$-1$_{10}$ ($ u_0$ = 150.498 GHz), and H$_2$S 1$_{10}$-1$_{01}$ ($ u_0$ = 168,763 GHz) emission lines. Results. We detected H$_2$S emission in four sources out of the nine observed, significantly increasing the number of detections toward YSOs. We also detected H$_2$CO and CS in six out of the nine. We identify a tentative correlation between H$_2$S 1$_{10}$-1$_{01}$ and H$_2$CO 2$_{11}$-1$_{10}$ as well as a tentative correlation between H$_2$S 1$_{10}$-1$_{01}$ and H$_2$O 8$_{18}$-7$_{07}$. By assuming local thermodynamical equilibrium, we computed column densities for the sources in the sample, with N(o-H$_2$S) values ranging between $2.6times10^{12}$ cm$^{-2}$ and $1.5times10^{13}$ cm$^{-2}$.
Self-gravity becomes competitive as an angular momentum transport process in accretion discs at large radii, where the temperature is low enough that external irradiation likely contributes to the thermal balance. Irradiation is known to weaken the strength of disc self-gravity, and can suppress it entirely if the disc is maintained above the threshold for linear instability. However, its impact on the susceptibility of the disc to fragmentation is less clear. We use two-dimensional numerical simulations to investigate the evolution of self-gravitating discs as a function of the local cooling time and strength of irradiation. In the regime where the disc does not fragment, we show that local thermal equilibrium continues to determine the stress - which can be represented as an effective viscous alpha - out to very long cooling times (at least 240 dynamical times). In this regime, the power spectrum of the perturbations is uniquely set by the effective viscous alpha and not by the cooling rate. Fragmentation occurs for cooling times tau < beta_crit / Omega, where beta_crit is a weak function of the level of irradiation. We find that beta_crit declines by approximately a factor of two, as irradiation is increased from zero up to the level where instability is almost quenched. The numerical results imply that irradiation cannot generally avert fragmentation of self-gravitating discs at large radii; if other angular momentum transport sources are weak mass will build up until self-gravity sets in, and fragmentation will ensue.
99 - L. Podio , A. Garufi , C. Codella 2020
The chemical composition of planets is inherited from that of the protoplanetary disk at the time of planet formation. Increasing observational evidence suggests that planet formation occurs in less than 1 Myr. This motivates the need for spatially resolved spectral observations of Class I disks, as carried out by the ALMA chemical survey of Disk-Outflow sources in Taurus (ALMA-DOT). In the context of ALMA-DOT, we observe the edge-on disk around the Class I source IRAS 04302+2247 (the butterfly star) in the 1.3mm continuum and five molecular lines. We report the first tentative detection of methanol (CH$_3$OH) in a Class I disk and resolve, for the first time, the vertical structure of a disk with multiple molecular tracers. The bulk of the emission in the CO 2-1, CS 5-4, and o-H$_2$CO 3(1,2)-2(1,1) lines originates from the warm molecular layer, with the line intensity peaking at increasing disk heights, $z$, for increasing radial distances, $r$. Molecular emission is vertically stratified, with CO observed at larger disk heights (aperture $z/rsim0.41-0.45$) compared to both CS and H$_2$CO, which are nearly cospatial ($z/rsim0.21-0.28$). In the outer midplane, the line emission decreases due to molecular freeze-out onto dust grains (freeze-out layer) by a factor of >100 (CO) and 15 (CS). The H$_2$CO emission decreases by a factor of only about 2, which is possibly due to H$_2$CO formation on icy grains, followed by a nonthermal release into the gas phase. The inferred [CH$_3$OH]/[H$_2$CO] abundance ratio is 0.5-0.6, which is 1-2 orders of magnitude lower than for Class 0 hot corinos, and a factor ~2.5 lower than the only other value inferred for a protoplanetary disk (in TW Hya, 1.3-1.7). Additionally, it is at the lower edge but still consistent with the values in comets. This may indicate that some chemical reprocessing occurs in disks before the formation of planets and comets.
65 - W. Ubachs 2018
Absorption lines of H$_2$ and HD molecules observed at high redshift in the line of sight towards quasars are a test ground to search for variation of the proton-to-electron mass ratio $mu$. For this purpose, results from astronomical observations are compared with a compilation of molecular data of the highest accuracy, obtained in laboratory studies as well as in first-principles calculations. Aims: A comprehensive line list is compiled for H$_2$ and HD absorption lines in the Lyman ($B^1Sigma_u^+$ - $X^1Sigma_g^+$) and Werner ($C^1Pi_u$ - $X^1Sigma_g^+$) band systems up to the Lyman cutoff at 912 Angstroms. Molecular parameters listed for each line $i$ are the transition wavelength $lambda_i$, the line oscillator strength $f_i$, the radiative damping parameter of the excited state $Gamma_i$, and the sensitivity coefficient $K_i$ for a variation of the proton-to-electron mass ratio. Methods: The transition wavelengths $lambda_i$ for the H$_2$ and HD molecules are determined by a variety of advanced high-precision spectroscopic experiments involving narrowband vacuum ultraviolet lasers, Fourier-transform spectrometers, and synchrotron radiation sources. Results for the line oscillator strengths $f_i$, damping parameters $Gamma_i$, and sensitivity coefficients $K_i$ are obtained in theoretical quantum chemical calculations. Results: A new list of molecular data is compiled for future analyses of cold clouds of hydrogen absorbers, specifically for studies of $mu$-variation from quasar data. The list is applied in a refit of quasar absorption spectra of B0642$-$5038 and J1237$+$0647 yielding constraints on a variation of the proton-to-electron mass ratio $Deltamu/mu$ consistent with previous analyses.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا