Do you want to publish a course? Click here

H$_2$S observations in young stellar disks in Taurus

159   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Context. Studying gas chemistry in protoplanetary disks is key to understanding the process of planet formation. Sulfur chemistry in particular is poorly understood in interstellar environments, and the location of the main reservoirs remains unknown. Protoplanetary disks in Taurus are ideal targets for studying the evolution of the composition of planet forming systems. Aims. We aim to elucidate the chemical origin of sulfur-bearing molecular emission in protoplanetary disks, with a special focus on H$_2$S emission, and to identify candidate species that could become the main molecular sulfur reservoirs in protoplanetary systems. Methods. We used IRAM 30m observations of nine gas-rich young stellar objects (YSOs) in Taurus to perform a survey of sulfur-bearing and oxygen-bearing molecular species. In this paper we present our results for the CS 3-2 ($ u_0$ = 146.969 GHz), H$_2$CO 2$_{11}$-1$_{10}$ ($ u_0$ = 150.498 GHz), and H$_2$S 1$_{10}$-1$_{01}$ ($ u_0$ = 168,763 GHz) emission lines. Results. We detected H$_2$S emission in four sources out of the nine observed, significantly increasing the number of detections toward YSOs. We also detected H$_2$CO and CS in six out of the nine. We identify a tentative correlation between H$_2$S 1$_{10}$-1$_{01}$ and H$_2$CO 2$_{11}$-1$_{10}$ as well as a tentative correlation between H$_2$S 1$_{10}$-1$_{01}$ and H$_2$O 8$_{18}$-7$_{07}$. By assuming local thermodynamical equilibrium, we computed column densities for the sources in the sample, with N(o-H$_2$S) values ranging between $2.6times10^{12}$ cm$^{-2}$ and $1.5times10^{13}$ cm$^{-2}$.



rate research

Read More

The chemical composition of gas and ice in disks around young stars set the bulk composition of planets. In contrast to protoplanetary disks (Class II), young disks that are still embedded in their natal envelope (Class 0 and I) are predicted to be too warm for CO to freeze out, as has been confirmed observationally for L1527 IRS. To establish whether young disks are generally warmer than their more evolved counterparts, we observed five young (Class 0/I and Class I) disks in Taurus with the Atacama Large Millimeter/submillimeter Array (ALMA), targeting C$^{17}$O $2-1$, H$_2$CO $3_{1,2}-2_{1,1}$, HDO $3_{1,2}-2_{2,1}$ and CH$_3$OH $5_K-4_K$ transitions at $0.48^{primeprime} times 0.31^{primeprime}$ resolution. The different freeze-out temperatures of these species allow us to derive a global temperature structure. C$^{17}$O and H$_2$CO are detected in all disks, with no signs of CO freeze-out in the inner $sim$100 au, and a CO abundance close to $sim$10$^{-4}$. H$_2$CO emission originates in the surface layers of the two edge-on disks, as witnessed by the especially beautiful V-shaped emission pattern in IRAS~04302+2247. HDO and CH$_3$OH are not detected, with column density upper limits more than 100 times lower than for hot cores. Young disks are thus found to be warmer than more evolved protoplanetary disks around solar analogues, with no CO freeze-out (or only in the outermost part of $gtrsim$100 au disks) or CO processing. However, they are not as warm as hot cores or disks around outbursting sources, and therefore do not have a large gas-phase reservoir of complex molecules.
Recent observations have suggested that circumstellar disks may commonly form around young stellar objects. Although the formation of circumstellar disks can be a natural result of the conservation of angular momentum in the parent cloud, theoretical studies instead show disk formation to be difficult from dense molecular cores magnetized to a realistic level, owing to efficient magnetic braking that transports a large fraction of the angular momentum away from the circumstellar region. We review recent progress in the formation and early evolution of disks around young stellar objects of both low-mass and high-mass, with an emphasis on mechanisms that may bridge the gap between observation and theory, including non-ideal MHD effects and asymmetric perturbations in the collapsing core (e.g., magnetic field misalignment and turbulence). We also address the associated processes of outflow launching and the formation of multiple systems, and discuss possible implications in properties of protoplanetary disks.
90 - A. Moor , A. Kospal , P. Abraham 2016
A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we present 70 and 160$mu$m observations of 31 systems in the $beta$ Pic moving group, and in the Tucana-Horologium, Columba, Carina and Argus associations, using the Herschel Space Observatory. None of these stars were observed at far-infrared wavelengths before. Our Herschel measurements were complemented by photometry from the WISE satellite for the whole sample, and by submillimeter/millimeter continuum data for one source, HD 48370. We identified six stars with infrared excess, four of them are new discoveries. By combining our new findings with results from the literature, we examined the incidence and general characteristics of debris disks around Sun-like members of the selected groups. With their dust temperatures of <45 K the newly identified disks around HD 38397, HD 48370, HD 160305, and BD-20 951 represent the coldest population within this sample. For HD 38397 and HD 48370, the emission is resolved in the 70$mu$m PACS images, the estimated radius of these disks is ~90 au. Together with the well-known disk around HD 61005, these three systems represent the highest mass end of the known debris disk population around young G-type members of the selected groups. In terms of dust content, they resemble the hypothesized debris disk of the ancient Solar System.
Rings are the most frequently revealed substructure in ALMA dust observations of protoplanetary disks, but their origin is still hotly debated. In this paper, we identify dust substructures in 12 disks and measure their properties to investigate how they form. This subsample of disks is selected from a high-resolution ($sim0.12$) ALMA 1.33 mm survey of 32 disks in the Taurus star-forming region, which was designed to cover a wide range of sub-mm brightness and to be unbiased to previously known substructures. While axisymmetric rings and gaps are common within our sample, spiral patterns and high contrast azimuthal asymmetries are not detected. Fits of disk models to the visibilities lead to estimates of the location and shape of gaps and rings, the flux in each disk component, and the size of the disk. The dust substructures occur across a wide range of stellar mass and disk brightness. Disks with multiple rings tend to be more massive and more extended. The correlation between gap locations and widths, the intensity contrast between rings and gaps, and the separations of rings and gaps could all be explained if most gaps are opened by low-mass planets (super-Earths and Neptunes) in the condition of low disk turbulence ($alpha=10^{-4}$). The gap locations are not well correlated with the expected locations of CO and N$_2$ ice lines, so condensation fronts are unlikely to be a universal mechanism to create gaps and rings, though they may play a role in some cases.
We present a high-resolution ($sim0.12$, $sim16$ au, mean sensitivity of $50~mu$Jy~beam$^{-1}$ at 225 GHz) snapshot survey of 32 protoplanetary disks around young stars with spectral type earlier than M3 in the Taurus star-forming region using Atacama Large Millimeter Array (ALMA). This sample includes most mid-infrared excess members that were not previously imaged at high spatial resolution, excluding close binaries and highly extincted objects, thereby providing a more representative look at disk properties at 1--2 Myr. Our 1.3 mm continuum maps reveal 12 disks with prominent dust gaps and rings, 2 of which are around primary stars in wide binaries, and 20 disks with no resolved features at the observed resolution (hereafter smooth disks), 8 of which are around the primary star in wide binaries. The smooth disks were classified based on their lack of resolved substructures, but their most prominent property is that they are all compact with small effective emission radii ($R_{rm eff,95%} lesssim 50$ au). In contrast, all disks with $R_{rm eff,95%}$ of at least 55 au in our sample show detectable substructures. Nevertheless, their inner emission cores (inside the resolved gaps) have similar peak brightness, power law profiles, and transition radii to the compact smooth disks, so the primary difference between these two categories is the lack of outer substructures in the latter. These compact disks may lose their outer disk through fast radial drift without dust trapping, or they might be born with small sizes. The compact dust disks, as well as the inner disk cores of extended ring disks, that look smooth at the current resolution will likely show small-scale or low-contrast substructures at higher resolution. The correlation between disk size and disk luminosity correlation demonstrates that some of the compact disks are optically thick at millimeter wavelengths.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا