Do you want to publish a course? Click here

Stability of self-gravitating discs under irradiation

175   0   0.0 ( 0 )
 Added by Philip Armitage
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

Self-gravity becomes competitive as an angular momentum transport process in accretion discs at large radii, where the temperature is low enough that external irradiation likely contributes to the thermal balance. Irradiation is known to weaken the strength of disc self-gravity, and can suppress it entirely if the disc is maintained above the threshold for linear instability. However, its impact on the susceptibility of the disc to fragmentation is less clear. We use two-dimensional numerical simulations to investigate the evolution of self-gravitating discs as a function of the local cooling time and strength of irradiation. In the regime where the disc does not fragment, we show that local thermal equilibrium continues to determine the stress - which can be represented as an effective viscous alpha - out to very long cooling times (at least 240 dynamical times). In this regime, the power spectrum of the perturbations is uniquely set by the effective viscous alpha and not by the cooling rate. Fragmentation occurs for cooling times tau < beta_crit / Omega, where beta_crit is a weak function of the level of irradiation. We find that beta_crit declines by approximately a factor of two, as irradiation is increased from zero up to the level where instability is almost quenched. The numerical results imply that irradiation cannot generally avert fragmentation of self-gravitating discs at large radii; if other angular momentum transport sources are weak mass will build up until self-gravity sets in, and fragmentation will ensue.



rate research

Read More

120 - Ken Rice 2016
It is quite likely that self-gravity will play an important role in the evolution of accretion discs, in particular those around young stars, and those around supermassive black holes. We summarise, here, our current understanding of the evolution of such discs, focussing more on discs in young stellar system, than on discs in active galactic nuclei. We consider the conditions under which such discs may fragment to form bound objects, and when they might, instead, be expected to settle into a quasi-steady, self-regulated state. We also discuss how this understanding may depend on the mass of the disc relative to the mass of the central object, and how it might depend on the presence of external irradiation. Additionally, we consider whether or not fragmentation might be stochastic, where we might expect it to occur in an actual protostellar disc, and if there is any evidence for fragmentation actually playing a role in the formation of planetary-mass bodies. Although there are still a number of outstanding issue, such as the convergence of simulations of self-gravitating discs, whether or not there is more than one mode of fragmentation, and quite what role self-gravitating discs may play in the planet formation process, our general understanding of these systems seems quite robust.
218 - Zs. Regaly , E. Vorobyov 2017
Horseshoe-shaped brightness asymmetries of several transitional discs are thought to be caused by large-scale vortices. Anticyclonic vortices are efficiently collect dust particles, therefore they can play a major role in planet formation. Former studies suggest that the disc self-gravity weakens vortices formed at the edge of the gap opened by a massive planet in discs whose masses are in the range of 0.01<=M_disc/M_*<=0.1. Here we present an investigation on the long-term evolution of the large-scale vortices formed at the viscosity transition of the discs dead zone outer edge by means of two-dimensional hydrodynamic simulations taking disc self-gravity into account. We perform a numerical study of low mass, 0.001<=M_disc/M_*<=0.01, discs, for which cases disc self-gravity was previously neglected. The large-scale vortices are found to be stretched due to disc self-gravity even for low-mass discs with M_disc/M_*>=0.005 where initially the Toomre Q-parameter was <=50 at the vortex distance. As a result of stretching, the vortex aspect ratio increases and a weaker azimuthal density contrast develops. The strength of the vortex stretching is proportional to the disc mass. The vortex stretching can be explained by a combined action of a non-vanishing gravitational torque caused by the vortex, and the Keplerian shear of the disc. Self-gravitating vortices are subject to significantly faster decay than non-self-gravitating ones. We found that vortices developed at sharp viscosity transitions of self-gravitating discs can be described by a GNG model as long as the disc viscosity is low, i.e. alpha_dz<=10^-5.
In this paper we present simulated observations of massive self-gravitating circumstellar discs using the Atacama Large Millimetre/sub-millimetre Array (ALMA). Using a smoothed particle hydrodynamics model of a $0.2M_{odot}$ disc orbiting a $1M_{odot}$ protostar, with a cooling model appropriate for discs at temperatures below $sim 160$K and representative dust opacities, we have constructed maps of the expected emission at sub-mm wavelengths. We have then used the CASA ALMA simulator to generate simulated images and visibilities with various array configurations and observation frequencies, taking into account the expected thermal noise and atmospheric opacities. We find that at 345 GHz (870 $mu$m) spiral structures at a resolution of a few AU should be readily detectable in approximately face-on discs out to distances of the Taurus-Auriga star-forming complex.
{CircumStellar Envelopes (CSEs) of stars are complex chemical objects for which theoretical models encounter difficulties in elaborating a comprehensive overview of the occurring chemical processes. Along with photodissociation, ion-neutral reactions and dissociative recombination might play an important role in controlling molecular growth in outer CSEs. The aim of this work is to provide experimental insights into pathways of photochemistry-driven molecular growth within outer CSEs to draw a more complete picture of the chemical processes occurring within these molecule-rich environments. A simplified CSE environment was therefore reproduced in the laboratory through gas-phase experiments exposing relevant gas mixtures to an Extreme UltraViolet (EUV) photon source. This photochemical reactor should ultimately allow us to investigate chemical processes and their resulting products occurring under conditions akin to outer CSEs. We used a recently developed EUV lamp coupled to the APSIS photochemical cell to irradiate CSE relevant gas mixtures of H$_2$, CO and N$_2$, at one wavelength, 73.6 nm. The detection and identification of chemical species in the photochemical reactor was achieved through in-situ mass spectrometry analysis of neutral and cationic molecules. We find that exposing CO-N$_2$-H$_2$ gas mixtures to EUV photons at 73.6 nm induces photochemical reactions that yield the formation of complex, neutral and ionic species. Our work shows that N$_2$H$^+$ can be formed through photochemistry along with highly oxygenated ion molecules like HCO$^+$ in CSE environments. We also observe neutral N-rich organic species including triazole and aromatic molecules. These results confirm the suitability of our experimental setting to investigate photochemical reactions and provide fundamental insights into the mechanisms of molecular growth in the outer CSEs.
I review recent progresses in the dynamics and the evolution of self-gravitating accretion discs. Accretion discs are a fundamental component of several astrophysical systems on very diverse scales, and can be found around supermassive black holes in Active Galactic Nuclei (AGN), and also in our Galaxy around stellar mass compact objects and around young stars. Notwithstanding the specific differences arising from such diversity in physical extent, all these systems share a common feature where a central object is fed from the accretion disc, due to the effect of turbulence and disc instabilities, which are able to remove the angular momentum from the gas and allow its accretion. In recent years, it has become increasingly apparent that the gravitational field produced by the disc itself (the discs self-gravity) is an important ingredient in the models, especially in the context of protostellar discs and of AGN discs. Indeed, it appears that in many cases (and especially in the colder outer parts of the disc) the development of gravitational instabilities can be one of the main agents in the redistribution of angular momentum. In some cases, the instability can be strong enough to lead to the formation of gravitationally bound clumps within the disc, and thus to determine the disc fragmentation. As a result, progress in our understanding of the dynamics of self-gravitating discs is essential to understand the processes that lead to the feeding of both young stars and of supermassive black holes in AGN. At the same time, understanding the fragmentation conditions is important to determine under which conditions AGN discs would fragment and form stars and whether protostellar discs might form giant gaseous planets through disc fragmentation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا