Do you want to publish a course? Click here

Unexpected Giant Microwave Conductivity in a Nominally Silent BiFeO3 Domain Wall

133   0   0.0 ( 0 )
 Added by Yen-Lin Huang
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Nanoelectronic devices based on ferroelectric domain walls (DWs), such as memories, transistors, and rectifiers, have been demonstrated in recent years. Practical high-speed electronics, on the other hand, usually demand operation frequencies in the giga-Hertz (GHz) regime, where the effect of dipolar oscillation is important. In this work, an unexpected giant GHz conductivity on the order of 103 S/m is observed in certain BiFeO3 DWs, which is about 100,000 times greater than the carrier-induced dc conductivity of the same walls. Surprisingly, the nominal configuration of the DWs precludes the ac conduction under an excitation electric field perpendicular to the surface. Theoretical analysis shows that the inclined DWs are stressed asymmetrically near the film surface, whereas the vertical walls in a control sample are not. The resultant imbalanced polarization profile can then couple to the out-of-plane microwave fields and induce power dissipation, which is confirmed by the phase-field modeling. Since the contributions from mobile-carrier conduction and bound-charge oscillation to the ac conductivity are equivalent in a microwave circuit, the research on local structural dynamics may open a new avenue to implement DW nano-devices for RF applications.



rate research

Read More

Ferroelectric domain walls (DWs) are nanoscale topological defects that can be easily tailored to create nanoscale devices. Their excitations, recently discovered to be responsible for DW GHz conductivity, hold promise for faster signal transmission and processing speed compared to the existing technology. Here we find that DW phonons disperse from GHz to THz frequencies, thus explaining the origin of the surprisingly broad GHz signature in DW conductivity. Puzzling activation of nominally silent DW sliding modes in BiFeO3 is traced back to DW tilting and resulting asymmetry in wall-localized phonons. The obtained phonon spectra and selection rules are used to simulate scanning impedance microscopy, emerging as a powerful probe in nanophononics. The results will guide experimental discovery of the predicted phonon branches and design of DW-based nanodevices.
Using Landau-Ginzburg-Devonshire theory we calculated numerically the static conductivity of both inclined and counter domain walls in the uniaxial ferroelectrics-semiconductors of n-type. We used the effective mass approximation for the electron and holes density of states, which is valid at arbitrary distance from the domain wall. Due to the electrons accumulation, the static conductivity drastically increases at the inclined head-to-head wall by 1 order of magnitude for small incline angles theta pi/40 by up 3 orders of magnitude for the counter domain wall (theta=pi/2). Two separate regions of the space charge accumulation exist across an inclined tail-to-tail wall: the thin region in the immediate vicinity of the wall with accumulated mobile holes and the much wider region with ionized donors. The conductivity across the tail-to-tail wall is at least an order of magnitude smaller than the one of the head-to-head wall due to the low mobility of holes, which are improper carries. The results are in qualitative agreement with recent experimental data for LiNbO3 doped with MgO.
Although enhanced conductivity at ferroelectric domain boundaries has been found in BiFeO$_3$ films, Pb(Zr,Ti)O$_3$ films, and hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO$_3$ thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO$_3$ films is governed by a single conduction mechanism, namely, the back-to-back Schottky diodes model tuned by the segregation of defects.
379 - Gustau Catalan 2013
We analyze the hypothetical link between octahedral straightening and increased conductivity inside the domain walls of BiFeO3. Our calculations for 109 degree walls predict a lattice parameter expansion of c.a. 1 percent in the direction perpendicular to the wall, and an associated straightening of the octahedral rotation angle of 4 degrees, which is comparable to that observed in the high temperature metallic phase of BiFeO3. On the other hand, in the closely related family of rare-earth orthoferrites, straighter octahedra do not correlate with increased bandgap, which suggests that the correlation between octahedral straightening and bandgap reduction in BiFeO3 is perhaps fortuitous and not necessarily the cause of increased conductivity at the walls.
82 - L. L. Kish , A. Thaler , M. Lee 2020
The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential has not yet been realized in the field of magnetism. We show that mechanically strained samples of Mn$_3$O$_4$ and MnV$_2$O$_4$ exhibit a stripe-like patterning of the bulk magnetization below known magnetostructural transitions, similar to the structural domains reported in ferroelectric materials. Building off our previous magnetic force microscopy data, we use small angle neutron scattering to show that these patterns extend to the bulk, and demonstrate an ability to manipulate the domain walls via applied magnetic field and mechanical stress. We then connect these domains back to the anomalously large magnetoelastic and magnetodielectric response functions reported in these materials, directly correlating local and macroscopic measurements on the same crystals.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا