Do you want to publish a course? Click here

Domain wall patterning and giant response functions in ferrimagnetic spinels

83   0   0.0 ( 0 )
 Added by Lazar Kish
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The manipulation of mesoscale domain wall phenomena has emerged as a powerful strategy for designing ferroelectric responses in functional devices, but its full potential has not yet been realized in the field of magnetism. We show that mechanically strained samples of Mn$_3$O$_4$ and MnV$_2$O$_4$ exhibit a stripe-like patterning of the bulk magnetization below known magnetostructural transitions, similar to the structural domains reported in ferroelectric materials. Building off our previous magnetic force microscopy data, we use small angle neutron scattering to show that these patterns extend to the bulk, and demonstrate an ability to manipulate the domain walls via applied magnetic field and mechanical stress. We then connect these domains back to the anomalously large magnetoelastic and magnetodielectric response functions reported in these materials, directly correlating local and macroscopic measurements on the same crystals.



rate research

Read More

167 - Voicu O. Dolocan 2015
Interactions between pairs of magnetic domain walls (DW) and pinning by radial constrictions were studied in cylindrical nanowires with surface roughness. It was found that a radial constriction creates a symmetric pinning potential well, with a change of slope when the DW is situated outside the notch. Surface deformation induces an asymmetry in the pinning potential as well as dynamical pinning. The depinning fields of the domain walls were found generally to decrease with increasing surface roughness. A DW pinned at a radial constriction creates a pinning potential well for a free DW in a parallel wire. We determined that trapped bound DW states appear above the depinning threshold and that the surface roughness facilitates the trapped bound DW states in parallel wires.
One fundamental obstacle to efficient ferromagnetic spintronics is magnetic precession, which intrinsically limits the dynamics of magnetic textures, We demonstrate that the domain wall precession fully vanishes with a record mobility when the net angular momentum is compensated (TAC) in DWs driven by spin-orbit torque in a ferrimagnetic GdFeCo/Pt track. We use transverse in-plane fields to reveal the internal structure of DWs and provide a robust and parameter-free measurement of TAC. Our results highlight the mechanism of faster and more efficient dynamics in materials with multiple spin lattices and reduced net angular momentum, promising for high-speed, low-power spintronics applications.
132 - A. Pivano , V. O. Dolocan 2015
The interaction between transverse magnetic domain walls (TDWs) in planar (2D) and cylindrical (3D) nanowires is examined using micromagnetic simulations. We show that in perfect and surface deformed wires the free TDWs behave differently, as the 3D TDWs combine into metastable states with average lifetimes of 300ns depending on roughness, while the 2D TDWs do not due to 2D shape anisotropy. When the 2D and 3D TDWs are pinned at artificial constrictions, they behave similarly as they interact mainly through the dipolar field. This magnetostatic interaction is well described by the point charge model with multipole expansion. In surface deformed wires with artificial constrictions, the interaction becomes more complex as the depinning field decreases and dynamical pinning can lead to local resonances. This can strongly influence the control of TDWs in DW-based devices.
Spin-transfer torque (STT) and spin-orbit torque (SOT) are spintronic phenomena allowing magnetization manipulation using electrical currents. Beyond their fundamental interest, they allow developing new classes of magnetic memories and logic devices, in particular based on domain wall (DW) motion. In this work, we report the study of STT driven DW motion in ferrimagnetic manganese nickel nitride (Mn4-xNixN) films, in which a fine adjustment of the Ni content allows setting the magnetic compensation at room temperature. The reduced magnetization, combined with the large spin polarization of conduction electrons, strongly enhances the STT so that domain wall velocities approaching 3000 m/s can be obtained for Ni compositions close to the compensation point. In addition, a reversal of the domain wall motion direction is observed when the magnetic compensation composition is crossed. This striking feature, related to the change of direction of the spin polarization with respect to that of the net magnetization, is clarified by ab initio band structure calculations.
199 - Gongzheng Chen , Jin Lan , Tai Min 2021
Ferroelectric materials are spontaneous symmetry breaking systems characterized by ordered electric polarizations. Similar to its ferromagnetic counterpart, a ferroelectric domain wall can be regarded as a soft interface separating two different ferroelectric domains. Here we show that two bound state excitations of electric polarization (polar wave), or the vibration and breathing modes, can be hosted and propagate within the ferroelectric domain wall. Specially, the vibration polar wave has zero frequency gap, thus is constricted deeply inside ferroelectric domain wall, and can propagate even in the presence of local pinnings. The ferroelectric domain wall waveguide as demonstrated here, offers new paradigm in developing ferroelectric information processing units.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا