No Arabic abstract
The $q$-analog of Kostants weight multiplicity formula is an alternating sum over a finite group, known as the Weyl group, whose terms involve the $q$-analog of Kostants partition function. This formula, when evaluated at $q=1$, gives the multiplicity of a weight in a highest weight representation of a simple Lie algebra. In this paper, we consider the Lie algebra $mathfrak{sl}_4(mathbb{C})$ and give closed formulas for the $q$-analog of Kostants weight multiplicity. This formula depends on the following two sets of results. First, we present closed formulas for the $q$-analog of Kostants partition function by counting restricted colored integer partitions. These formulas, when evaluated at $q=1$, recover results of De Loera and Sturmfels. Second, we describe and enumerate the Weyl alternation sets, which consist of the elements of the Weyl group that contribute nontrivially to Kostants weight multiplicity formula. From this, we introduce Weyl alternation diagrams on the root lattice of $mathfrak{sl}_4(mathbb{C})$, which are associated to the Weyl alternation sets. This work answers a question posed in 2019 by Harris, Loving, Ramirez, Rennie, Rojas Kirby, Torres Davila, and Ulysse.
Kostants weight $q$-multiplicity formula is an alternating sum over a finite group known as the Weyl group, whose terms involve the $q$-analog of Kostants partition function. The $q$-analog of the partition function is a polynomial-valued function defined by $wp_q(xi)=sum_{i=0}^k c_i q^i$, where $c_i$ is the number of ways the weight $xi$ can be written as a sum of exactly $i$ positive roots of a Lie algebra $mathfrak{g}$. The evaluation of the $q$-multiplicity formula at $q = 1$ recovers the multiplicity of a weight in an irreducible highest weight representation of $mathfrak{g}$. In this paper, we specialize to the Lie algebra $mathfrak{sp}_6(mathbb{C})$ and we provide a closed formula for the $q$-analog of Kostants partition function, which extends recent results of Shahi, Refaghat, and Marefat. We also describe the supporting sets of the multiplicity formula (known as the Weyl alternation sets of $mathfrak{sp}_6(mathbb{C})$), and use these results to provide a closed formula for the $q$-multiplicity for any pair of dominant integral weights of $mathfrak{sp}_6(mathbb{C})$. Throughout this work, we provide code to facilitate these computations.
The multiplicity of a weight in a finite-dimensional irreducible representation of a simple Lie algebra g can be computed via Kostants weight multiplicity formula. This formula consists of an alternating sum over the Weyl group (a finite group) and involves a partition function known as Kostants partition function. Motivated by the observation that, in practice, most terms in the sum are zero, our main results describe the elements of the Weyl alternation sets. The Weyl alternation sets are subsets of the Weyl group which contributes nontrivially to the multiplicity of a weight in a highest weight representation of the Lie algebras so_4(C), so_5(C), sp_4(C), and the exceptional Lie algebra g_2. By taking a geometric approach, we extend the work of Harris, Lescinsky, and Mabie on sl_3(C), to provide visualizations of these Weyl alternation sets for all pairs of integral weights lambda and mu of the Lie algebras considered.
In this paper we explore the possibility of endowing simple infinite-dimensional ${mathfrak{sl}_2(mathbb{C})}$-modules by the structure of the graded module. The gradings on finite-dimensional simple module over simple Lie algebras has been studied in [arXiv:1308.6089] and [arXiv:1601.03008].
This paper examines the relationship between certain non-commutative analogues of projective 3-space, $mathbb{P}^3$, and the quantized enveloping algebras $U_q(mathfrak{sl}_2)$. The relationship is mediated by certain non-commutative graded algebras $S$, one for each $q in mathbb{C}^times$, having a degree-two central element $c$ such that $S[c^{-1}]_0 cong U_q(mathfrak{sl}_2)$. The non-commutative analogues of $mathbb{P}^3$ are the spaces $operatorname{Proj}_{nc}(S)$. We show how the points, fat points, lines, and quadrics, in $operatorname{Proj}_{nc}(S)$, and their incidence relations, correspond to finite dimensional irreducible representations of $U_q(mathfrak{sl}_2)$, Verma modules, annihilators of Verma modules, and homomorphisms between them.
We use analogues of Enrights and Arkhipovs functors to determine the quiver and relations for a category of $mathfrak{sl}_2 ltimes L(4)$-modules which are locally finite (and with finite multiplicities) over $mathfrak{sl}_2$. We also outline serious obstacles to extend our result to $mathfrak{sl}_2 ltimes L(k)$, for $k>4$.