Do you want to publish a course? Click here

Graded torsion-free ${mathfrak{sl}_2(mathbb{C})}$-modules of rank 2

85   0   0.0 ( 0 )
 Added by Abdallah Shihadeh
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

In this paper we explore the possibility of endowing simple infinite-dimensional ${mathfrak{sl}_2(mathbb{C})}$-modules by the structure of the graded module. The gradings on finite-dimensional simple module over simple Lie algebras has been studied in [arXiv:1308.6089] and [arXiv:1601.03008].



rate research

Read More

This paper examines the relationship between certain non-commutative analogues of projective 3-space, $mathbb{P}^3$, and the quantized enveloping algebras $U_q(mathfrak{sl}_2)$. The relationship is mediated by certain non-commutative graded algebras $S$, one for each $q in mathbb{C}^times$, having a degree-two central element $c$ such that $S[c^{-1}]_0 cong U_q(mathfrak{sl}_2)$. The non-commutative analogues of $mathbb{P}^3$ are the spaces $operatorname{Proj}_{nc}(S)$. We show how the points, fat points, lines, and quadrics, in $operatorname{Proj}_{nc}(S)$, and their incidence relations, correspond to finite dimensional irreducible representations of $U_q(mathfrak{sl}_2)$, Verma modules, annihilators of Verma modules, and homomorphisms between them.
This is the first part of a series of two papers aiming to construct a categorification of the braiding on tensor products of Verma modules, and in particular of the Lawrence--Krammer--Bigelow representations. In this part, we categorify all tensor products of Verma modules and integrable modules for quantum $mathfrak{sl_2}$. The categorification is given by derived categories of
The $q$-analog of Kostants weight multiplicity formula is an alternating sum over a finite group, known as the Weyl group, whose terms involve the $q$-analog of Kostants partition function. This formula, when evaluated at $q=1$, gives the multiplicity of a weight in a highest weight representation of a simple Lie algebra. In this paper, we consider the Lie algebra $mathfrak{sl}_4(mathbb{C})$ and give closed formulas for the $q$-analog of Kostants weight multiplicity. This formula depends on the following two sets of results. First, we present closed formulas for the $q$-analog of Kostants partition function by counting restricted colored integer partitions. These formulas, when evaluated at $q=1$, recover results of De Loera and Sturmfels. Second, we describe and enumerate the Weyl alternation sets, which consist of the elements of the Weyl group that contribute nontrivially to Kostants weight multiplicity formula. From this, we introduce Weyl alternation diagrams on the root lattice of $mathfrak{sl}_4(mathbb{C})$, which are associated to the Weyl alternation sets. This work answers a question posed in 2019 by Harris, Loving, Ramirez, Rennie, Rojas Kirby, Torres Davila, and Ulysse.
We use analogues of Enrights and Arkhipovs functors to determine the quiver and relations for a category of $mathfrak{sl}_2 ltimes L(4)$-modules which are locally finite (and with finite multiplicities) over $mathfrak{sl}_2$. We also outline serious obstacles to extend our result to $mathfrak{sl}_2 ltimes L(k)$, for $k>4$.
85 - E. Feigin 2006
In this paper we study an approximation of tensor product of irreducible integrable $hat{mathfrak{sl}_2}$ representations by infinite fusion products. This gives an approximation of the corresponding coset theories. As an application we represent characters of spaces of these theories as limits of certain restricted Kostka polynomials. This leads to the bosonic (which is known) and fermionic (which is new) formulas for the $hat{mathfrak{sl}_2}$ branching functions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا