No Arabic abstract
When a droplet impacts a fabric mesh at a sufficiently high impact velocity, it not only spreads over the fabric but also penetrate its pores. To determine the influence of this liquid penetration of the fabric on droplet spreading on thin fabric meshes, we measured the droplet spreading ratio on fabric with and without an underlying substrate using a high-speed camera. For fabrics without a substrate, the droplet spreading ratio is reduced as the fabric penetration by the liquid reduces the droplet volume spreading on top of the fabric. Using entropic lattice Boltzmann simulations, we find that the lower droplet spreading ratio on fabrics, both with and without a substrate, is due to an increase of viscous losses inside the droplet during spreading. Comparing droplet impact of blood with its Newtonian counterpart, we show that for spreading on fabrics, just like on smooth surfaces, blood can be approximated as a Newtonian fluid.
Rayleigh instability that results in the breakup of a charged droplet, levitated in a quadrupole trap, has been investigated in the literature, but only scarcely. We report here asymmetric breakup of a charged drop, levitated in a loose trap, wherein, the droplet is stabilized at an off-center location in the trap. This aspect of levitation leads to an asymmetric breakup of the charged drop, predominantly in a direction opposite to that of gravity. In a first of its kind of study, we capture the successive events of the droplet deformation, breakup and relaxation of the drop after jet ejection using high speed imaging at a couple of hundred thousand frames per second. A pertinent question of the effect of the electrodynamic trap parameters such as applied voltage as well as physical parameters such as the size of the drop, gravity and conductivity on the characteristics of droplet breakup is also explored. A clear effect of the trap strength on the deformation (both symmetric and asymmetric) is observed. Moreover, the cone angle at the pole undergoing asymmetric breakup is almost independent of the applied field investigated in the experiments. All the experimental observations are compared with numerical simulations carried out using the boundary element method (BEM) in the Stokes flow limit. The BEM simulations are also extended to other experimentally achievable parameters. It is observed that the breakup is mostly field influenced, and not field induced. A plausible theory for the observations is reported, and a sensitive role of the sign of the charge on the droplet and the sign of the end cap potential, as well as the off-center location of the droplet in the trap.
Cardiovascular diseases, specifically cerebral aneurysms, represent a major cause of morbidity and mortality, having a significant impact on the cost and overall status of health care. In the present work, we employ a haemorheological blood model originally proposed by Owens to investigate the haemodynamics of blood flow through an aneurytic channel. This constitutive equation for whole human blood is derived using ideas drawn from temporary polymer network theory to model the aggregation and disaggregation of erythrocytes in normal human blood at different shear rates. To better understand the effect of rheological models on the haemodynamics of blood flow in cerebral aneurysms we compare our numerical results with those obtained with other rheological models such as the Carreau-Yasuda (C-Y) model. The results show that the velocity profiles for the Newtonian and the Owens models are approximately similar but differ from those of the C-Y model. In order to stabilize our numerical simulations, we propose two new stabilization techniques, the so-called N-Owens and I-Owens methods. Employing the N-Owens stabilization method enables us to capture the effect of erythrocyte aggregation in blood flow through a cerebral aneurysm at higher Weissenberg (We) and Reynolds (Re) numbers than would otherwise be possible.
We perform $3$D numerical simulations to investigate the sedimentation of a single sphere in the absence and presence of a simple cross shear flow in a yield stress fluid with weak inertia. In our simulations, the settling flow is considered to be the primary flow, whereas the linear cross shear flow is a secondary flow with amplitude $10%$ of the primary flow. To study the effects of elasticity and plasticity of the carrying fluid on the sphere drag as well as the flow dynamics, the fluid is modeled using the elastovisco-plastic (EVP) constitutive laws proposed by cite{saramito2009new}. The extra non-Newtonian stress tensor is fully coupled with the flow equation and the solid particle is represented by an immersed boundary (IB) method. Our results show that the fore-aft asymmetry in the velocity is less pronounced and the negative wake disappears when a linear cross shear flow is applied. We find that the drag on a sphere settling in a sheared yield stress fluid is reduced significantly as compared to an otherwise quiescent fluid. More importantly, the sphere drag in the presence of a secondary cross shear flow cannot be derived from the pure sedimentation drag law owing to the non-linear coupling between the simple shear flow and the uniform flow. Finally, we show that the drag on the sphere settling in a sheared yield-stress fluid is reduced at higher material elasticity mainly due to the form and viscous drag reduction.
Exact solutions for laminar stratified flows of Newtonian/non-Newtonian shear-thinning fluids in horizontal and inclined channels are presented. An iterative algorithm is proposed to compute the laminar solution for the general case of a Carreau non-Newtonian fluid. The exact solution is used to study the effect of the rheology of the shear-thinning liquid on two-phase flow characteristics considering both gas/liquid and liquid/liquid systems. Concurrent and counter-current inclined systems are investigated, including the mapping of multiple solution boundaries. Aspects relevant to practical applications are discussed, such as the insitu hold-up, or lubrication effects achieved by adding a less viscous phase. A characteristic of this family of systems is that, even if the liquid has a complex rheology (Carreau fluid), the two-phase stratified flow can behave like the liquid is Newtonian for a wide range of operational conditions. The capability of the two-fluid model to yield satisfactory predictions in the presence of shear-thinning liquids is tested, and an algorithm is proposed to a priori predict if the Newtonian (zero shear rate viscosity) behaviour arises for a given operational conditions in order to avoid large errors in the predictions of flow characteristics when the power-law is considered for modelling the shear-thinning behaviour. Two-fluid model closures implied by the exact solution and the effect of a turbulent gas layer are also addressed.
Computational Fluid Dynamics (CFD) is currently used to design and improve the hydraulic properties of biomedical devices, wherein the large scale blood circulation needs to be simulated by accounting for the mechanical response of red blood cells (RBCs) at mesoscales. In many practical instances, biomedical devices work on time-scales comparable to the intrinsic relaxation time of RBCs: thus, a systematic understanding of the time-dependent response of erythrocyte membranes is crucial for the effective design of such devices. So far, this information has been deduced from experimental data, which do not necessarily adapt to the the broad variety of the fluid dynamic conditions that can be encountered in practice. This work explores the novel possibility of studying the time-dependent response of an erythrocyte membrane to external mechanical loads via ab-initio, mesoscale numerical simulations, with a primary focus on the detailed characterisation of the RBC relaxation time $t_c$ following the arrest of the external mechanical load. The adopted mesoscale model exploits a hybrid Immersed Boundary-Lattice Boltzmann Method (IB-LBM), coupled with the Standard Linear Solid model (SLS) to account for the RBC membrane viscosity. We underscore the key importance of the 2D membrane viscosity $mu_{m}$ to correctly reproduce the relaxation time of the RBC membrane. A detailed assessment of the dependencies on the typology and strength of the applied mechanical loads is also provided. Overall, our findings open interesting future perspectives for the study of the non-linear response of RBCs immersed in time-dependent strain fields.