No Arabic abstract
Rayleigh instability that results in the breakup of a charged droplet, levitated in a quadrupole trap, has been investigated in the literature, but only scarcely. We report here asymmetric breakup of a charged drop, levitated in a loose trap, wherein, the droplet is stabilized at an off-center location in the trap. This aspect of levitation leads to an asymmetric breakup of the charged drop, predominantly in a direction opposite to that of gravity. In a first of its kind of study, we capture the successive events of the droplet deformation, breakup and relaxation of the drop after jet ejection using high speed imaging at a couple of hundred thousand frames per second. A pertinent question of the effect of the electrodynamic trap parameters such as applied voltage as well as physical parameters such as the size of the drop, gravity and conductivity on the characteristics of droplet breakup is also explored. A clear effect of the trap strength on the deformation (both symmetric and asymmetric) is observed. Moreover, the cone angle at the pole undergoing asymmetric breakup is almost independent of the applied field investigated in the experiments. All the experimental observations are compared with numerical simulations carried out using the boundary element method (BEM) in the Stokes flow limit. The BEM simulations are also extended to other experimentally achievable parameters. It is observed that the breakup is mostly field influenced, and not field induced. A plausible theory for the observations is reported, and a sensitive role of the sign of the charge on the droplet and the sign of the end cap potential, as well as the off-center location of the droplet in the trap.
A charged droplet can be electrodynamically levitated in the air using a quadrupole trap by typically applying a sinusoidal electric field. When a charged drop is levitated it exhibits surface oscillations simultaneously building charge density due to continuous evaporation and subsequently undergoes breakup due to Rayleigh instability. In this work, we examined large-amplitude surface oscillations of a sub-Rayleigh charged drop and its subsequent breakup, levitated by various applied signals such as sine, square and ramp waveform at various imposed frequencies, using high-speed imaging (recorded at 100-130 thousand Frames Per Second (fps)). It is observed that the drop surface oscillates in sphere-prolate-sphere-oblate (SPSO) mode and seldom in the sphere-prolate-sphere (SPS) mode depending on the intricate interplay of various forces due to charge(q), the intensity of applied field ($Lambda$) and shift of the droplet from the geometric center of the trap ($z_{shift}$). The Fast Fourier Transformation (FFT) analysis shows that the droplet oscillates with the forced frequency irrespective of the type of the applied waveform. While in the sinusoidal case, the nonlinearities are significant, in the square and ramp potentials, there is an admittance of all the harmonic frequencies of the applied potential. Interestingly, the breakup characteristics of a critically charged droplet is found to be unaffected by the type of the applied waveform. The experimental observations are validated with an analytical theory as well as with the Boundary Integral (BI) simulations in the potential flow limit and the results are found to be in a reasonable agreement.
The breakup pathway of Rayleigh fission of a charged drop is unequivocally demonstrated by first of its kind, continuous, high-speed imaging of a drop levitated in an AC quadrupole trap. The experimental observations consistently exhibited asymmetric, sub-critical Rayleigh breakup with an upward (i.e. opposite to the direction of gravity) ejection of a jet from the levitated drop. These experiments supported by numerical calculations show that the gravity induced downward shift of the equilibrium position of the drop in the trap cause significant, large amplitude shape oscillations superimposed over the center-of-mass oscillations. The shape oscillations result in sufficient deformations to act as triggers for the onset of instability well below the Rayleigh limit (a subcritical instability). At the same time, the center-of-mass oscillations which are out of phase with the applied voltage, lead to an asymmetric breakup such that the Rayleigh fission occurs upwards via the ejection of a jet at the pole of the deformed drop. As an important application, it follows from corollarial reasoning that the nanodrop generation in electrospray devices will occur, more as a rule rather than as an exception, via asymmetric, subcritical Rayleigh fission events of micro drops due to inherent directionality provided by the external electric fields.
When a droplet impacts a fabric mesh at a sufficiently high impact velocity, it not only spreads over the fabric but also penetrate its pores. To determine the influence of this liquid penetration of the fabric on droplet spreading on thin fabric meshes, we measured the droplet spreading ratio on fabric with and without an underlying substrate using a high-speed camera. For fabrics without a substrate, the droplet spreading ratio is reduced as the fabric penetration by the liquid reduces the droplet volume spreading on top of the fabric. Using entropic lattice Boltzmann simulations, we find that the lower droplet spreading ratio on fabrics, both with and without a substrate, is due to an increase of viscous losses inside the droplet during spreading. Comparing droplet impact of blood with its Newtonian counterpart, we show that for spreading on fabrics, just like on smooth surfaces, blood can be approximated as a Newtonian fluid.
Droplet migration in a Hele--Shaw cell is a fundamental multiphase flow problem which is crucial for many microfluidics applications. We focus on the regime at low capillary number and three-dimensional direct numerical simulations are performed to investigate the problem. In order to reduce the computational cost, an adaptive mesh is employed and high mesh resolution is only used near the interface. Parametric studies are performed on the droplet horizontal radius and the capillary number. For droplets with an horizontal radius larger than half the channel height the droplet overfills the channel and exhibits a pancake shape. A lubrication film is formed between the droplet and the wall and particular attention is paid to the effect of the lubrication film on the droplet velocity. The computed velocity of the pancake droplet is shown to be lower than the average inflow velocity, which is in agreement with experimental measurements. The numerical results show that both the strong shear induced by the lubrication film and the three-dimensional flow structure contribute to the low mobility of the droplet. In this low-migration-velocity scenario the interfacial flow in the droplet reference frame moves toward the rear on the top and reverses direction moving to the front from the two side edges. The velocity of the pancake droplet and the thickness of the lubrication film are observed to decrease with capillary number. The droplet velocity and its dependence on capillary number cannot be captured by the classic Hele--Shaw equations, since the depth-averaged approximation neglects the effect of the lubrication film.
We numerically study the Rayleigh-Benard (RB) convection in two-dimensional model emulsions confined between two parallel walls at fixed temperatures. The systems under study are heterogeneous, with finite-size droplets dispersed in a continuous phase. The droplet concentration is chosen to explore the convective heat transfer of both Newtonian (low droplet concentration) and non-Newtonian (high droplet concentration) emulsions, the latter exhibiting shear-thinning rheology, with a noticeable increase of viscosity at low shear rates. It is well known that the transition to convection of a homogeneous Newtonian system is accompanied by the onset of steady flow and time-independent heat flux; in marked contrast, the heterogeneity of emulsions brings in an additional and previously unexplored phenomenology. As a matter of fact, when the droplet concentration increases, we observe that the heat transfer process is mediated by a non-steady flow, with neat heat-flux fluctuations, obeying a non-Gaussian statistics. The observed findings are ascribed to the emergence of space correlations among distant droplets, which we highlight via direct measurements of the droplets displacement and the characterisation of the associated correlation functions.