Do you want to publish a course? Click here

On the Modelling and Numerical Simulation of Non-Newtonian Blood Flow in an Aneurysm

80   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cardiovascular diseases, specifically cerebral aneurysms, represent a major cause of morbidity and mortality, having a significant impact on the cost and overall status of health care. In the present work, we employ a haemorheological blood model originally proposed by Owens to investigate the haemodynamics of blood flow through an aneurytic channel. This constitutive equation for whole human blood is derived using ideas drawn from temporary polymer network theory to model the aggregation and disaggregation of erythrocytes in normal human blood at different shear rates. To better understand the effect of rheological models on the haemodynamics of blood flow in cerebral aneurysms we compare our numerical results with those obtained with other rheological models such as the Carreau-Yasuda (C-Y) model. The results show that the velocity profiles for the Newtonian and the Owens models are approximately similar but differ from those of the C-Y model. In order to stabilize our numerical simulations, we propose two new stabilization techniques, the so-called N-Owens and I-Owens methods. Employing the N-Owens stabilization method enables us to capture the effect of erythrocyte aggregation in blood flow through a cerebral aneurysm at higher Weissenberg (We) and Reynolds (Re) numbers than would otherwise be possible.



rate research

Read More

The biotransport of the intravascular nanoparticle (NP) is influenced by both the complex cellular flow environment and the NP characteristics. Being able to computationally simulate such intricate transport phenomenon with high efficiency is of far-reaching significance to the development of nanotherapeutics, yet challenging due to large length-scale discrepancies between NP and red blood cell (RBC) as well as the complexity of NP dynamics. Recently, a lattice-Boltzmann (LB) based multiscale simulation method has been developed to capture both NP scale and cellular level transport phenomenon at high computational efficiency. The basic components of this method include the LB treatment for the fluid phase, a spectrin-link method for RBCs, and a Langevin dynamics (LD) approach to capturing the motion of the suspended NPs. Comprehensive two-way coupling schemes are established to capture accurate interactions between each component. The accuracy and robustness of the LB-LD coupling method are demonstrated through the relaxation of a single NP with initial momentum and self-diffusion of NPs. This approach is then applied to study the migration of NPs in a capillary vessel under physiological conditions. It is shown that Brownian motion is most significant for the NP distribution in capillary vessels. For 1~100 nm particles, the Brownian diffusion is the dominant radial diffusive mechanism compared to the RBC-enhanced diffusion. For ~500 nm particles, the Brownian diffusion and RBC-enhanced diffusion are comparable drivers for the particle radial diffusion process.
Various biological processes such as transport of oxygen and nutrients, thrombus formation, vascular angiogenesis and remodeling are related to cellular/subcellular level biological processes, where mesoscopic simulations resolving detailed cell dynamics provide a key to understanding and identifying the cellular basis of disease. To break this bottleneck and achieve a biologically meaningful timescale, we propose a multiscale parareal algorithm in which a continuum-based solver supervises a mesoscopic simulation in the time-domain. Using an iterative prediction-correction strategy, the parallel-in-time mesoscopic simulation supervised by its continuum-based counterpart can converge fast. The effectiveness of the proposed method is first verified in a time-dependent flow with a sinusoidal flowrate through a Y-shaped bifurcation channel. Physical quantities of interest including velocity, wall shear stress and flowrate are computed to compare against those of reference solutions, showing a less than 1% relative error on flowrate in the Newtonian flow and a less than 3% relative error in the non-Newtonian blood flow. The proposed method is then applied to a large-scale mesoscopic simulation of microvessel blood flow in a zebrafish hindbrain for temporal acceleration. The time-dependent blood flow from heartbeats in this realistic vascular network of zebrafish hindbrain is simulated using dissipative particle dynamics as the mesoscopic model, which is supervised by a one-dimensional blood flow model (continuum-based model) in multiple temporal sub-domains. The computational analysis shows that the resulting microvessel blood flow converges to the reference solution after only two iterations. The proposed method is suitable for long-time mesoscopic simulations with complex fluids and geometries.
Sand traps are used to measure Aeolian flux. Since they modify the surrounding wind velocity field their gauging represents an important challenge. We use numerical simulations under the assumption of homogeneous turbulence based on FLUENT to systematically study the flow field and trapping efficiency of one of the most common devices based on a hollow cylinder with two slits. In particular, we investigate the dependence on the wind speed, the Stokes number, the permeability of the membrane on the slit and the saltation height.
179 - K. T. Trinh 2010
This paper presents a method for calculating the wall shear rate in pipe turbulent flow. It collapses adequately the data measured in laminar flow and turbulent flow into a single flow curve and gives the basis for the design of turbulent flow viscometers. Key words: non-Newtonian, wall shear rate, turbulent, rheometer
We investigate flow of incompressible fluid in a cylindrical tube with elastic walls. The radius of the tube may change along its length. The discussed problem is connected to the blood flow in large human arteries and especially to nonlinear wave propagation due to the pulsations of the heart. The long-wave approximation for modeling of waves in blood is applied. The obtained model Korteweg-deVries equation possessing a variable coefficient is reduced to a nonlinear dynamical system of 3 first order differential equations. The low probability of arising of a solitary wave is shown. Periodic wave solutions of the model system of equations are studied and it is shown that the waves that are consequence of the irregular heart pulsations may be modeled by a sequence of parts of such periodic wave solutions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا