No Arabic abstract
During the last few years, intensive research efforts are being done in the field of brain interfaces to extract neuro-information from the signals representing neuronal activities in the human brain. Recent development of brain-to-computer interfaces support direct communication between animals brains, enabling direct brain-to-brain communication. Although these results are based on binary communication with relaxed requirements of latency and throughput, the fast development in neuro-science technologies indicates potential new scenarios for wireless communications between brains. In this paper we highlight technologies that are being used today to enable brain-to-brain communication and propose potential wireless communication architectures and requirements for future scenarios.
During the last few years, intensive research efforts are being done in the field of brain interfaces to extract neuro-information from the signals representing neuronal activities in the human brain. A recent development of these interfaces is capable of direct communication between animals brains, enabling direct brain-to-brain communication. Although these results are new and the experimental scenario simple, the fast development in neuroscience, and information and communication technologies indicate the potential of new scenarios for wireless communications between brains. Depending of the specific kind of neuro-activity to be communicated, the brain-to-brain link shall follow strict requirements of high data rates, low-latency, and reliable communication. In this paper we highlight key beyond 5G technologies that potentially will support this promising approach.
This paper reviews the current development of artificial intelligence (AI) techniques for the application area of robot communication. The study of the control and operation of multiple robots collaboratively toward a common goal is fast growing. Communication among members of a robot team and even including humans is becoming essential in many real-world applications. The survey focuses on the AI techniques for robot communication to enhance the communication capability of the multi-robot team, making more complex activities, taking an appreciated decision, taking coordinated action, and performing their tasks efficiently.
5G wireless communications technology is being launched, with many smart applications being integrated. However, 5G specifications merge the requirements of new emerging technologies forcefully. These include data rate, capacity, latency, reliability, resources sharing, and energy/bit. To meet these challenging demands, research is focusing on 6G wireless communications enabling different technologies and emerging new applications. In this report, the latest research work on 6G technologies and applications is summarized, and the associated research challenges are discussed.
Reconfigurable intelligent surfaces (RISs) have emerged as a cost- and energy-efficient technology that can customize and program the physical propagation environment by reflecting radio waves in preferred directions. However, the purely passive reflection of RISs not only limits the end-to-end channel beamforming gains, but also hinders the acquisition of accurate channel state information for the phase control at RISs. In this paper, we provide an overview of a hybrid relay-reflecting intelligent surface (HR-RIS) architecture, in which only a few elements are active and connected to power amplifiers and radio frequency chains. The introduction of a small number of active elements enables a remarkable system performance improvement which can also compensate for losses due to hardware impairments such as the deployment of limited-resolution phase shifters. Particularly, the active processing facilitates efficient channel estimation and localization at HR-RISs. We present two practical architectures for HR-RISs, namely, fixed and dynamic HR-RISs, and discuss their applications to beamforming, channel estimation, and localization. The benefits, key challenges, and future research directions for HR-RIS-aided communications are also highlighted. Numerical results for an exemplary deployment scenario show that HR-RISs with only four active elements can attain up to 42.8 percent and 41.8 percent improvement in spectral efficiency and energy efficiency, respectively, compared with conventional RISs.
A major hurdle to clinical translation of brain-machine interfaces (BMIs) is that current decoders, which are trained from a small quantity of recent data, become ineffective when neural recording conditions subsequently change. We tested whether a decoder could be made more robust to future neural variability by training it to handle a variety of recording conditions sampled from months of previously collected data as well as synthetic training data perturbations. We developed a new multiplicative recurrent neural network BMI decoder that successfully learned a large variety of neural-to- kinematic mappings and became more robust with larger training datasets. When tested with a non-human primate preclinical BMI model, this decoder was robust under conditions that disabled a state-of-the-art Kalman filter based decoder. These results validate a new BMI strategy in which accumulated data history is effectively harnessed, and may facilitate reliable daily BMI use by reducing decoder retraining downtime.