Do you want to publish a course? Click here

Theoretical investigation of the antimagnetic rotation in $^{104}$Pd

103   0   0.0 ( 0 )
 Added by Zhen-Hua Zhang
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The particle-number-conserving method based on the cranked shell model is used to investigate the antimagnetic rotation band in $^{104}$Pd. The experimental moments of inertia and reduced $B(E2)$ transition probabilities are reproduced well. The $J^{(2)}/B(E2)$ ratios are also discussed. The occupation probability of each orbital close to the Fermi surface and the contribution of each major shell to the total angular momentum alignment with rotational frequency are analyzed. The backbending mechanism of the ground state band in $^{104}$Pd is understood clearly and the configuration of the antimagnetic rotation after backbending is clarified. In addition, the crossing of a four quasiparticle states with this antimagnetic rotation band is also predicted. By examining the the closing of the four proton hole angular momenta towards the neutron angular momenta, the two-shears-like mechanism for this antimagnetic rotation is investigated and two stages of antimagnetic rotation in $^{104}$Pd are seen clearly.



rate research

Read More

The particle-number conserving method based on the cranked shell model is adopted to investigate the possible antimagnetic rotation bands in $^{100}$Pd. The experimental kinematic and dynamic moments of inertia, together with the $B(E2)$ values are reproduced quite well. The occupation probability of each neutron and proton orbital in the observed antimagnetic rotation band is analyzed and its configuration is confirmed. The contribution of each major shell to the total angular momentum alignment with rotational frequency in the lowest-lying positive and negative parity bands is analyzed. The level crossing mechanism of these bands is understood clearly. The possible antimagnetic rotation in the negative parity $alpha=0$ branch is predicted, which sensitively depends on the alignment of the neutron ($1g_{7/2}$, $2d_{5/2}$) pseudo-spin partners. The two-shears-like mechanism for this antimagnetic rotation is investigated by examining the closing of the proton hole angular momentum vector towards the neutron angular momentum vector.
78 - U.Tengblad , G.Faldt , 2005
The contributions of three different types of driving terms are included in the estimation of the pd -> pd eta reaction at low energies. Near threshold, it is predicted that a two-step model involving an intermediate pion should be the most important but, as the energy approaches the threshold for eta production in the free nucleon--nucleon reaction, a pick-up mechanism with a spectator proton should become dominant. The total cross sections are underestimated by about a factor of two compared to experimental data but the discrepancies in the angular distributions are more serious, with no sign in the data for the peaks corresponding to the pick--up diagram.
The effect of nuclear superfluidity on antimagnetic rotation bands in $^{105}$Cd and $^{106}$Cd are investigated by the cranked shell model with the pairing correlations and the blocking effects treated by a particle-number conserving method. The experimental moments of inertia and the reduced $B(E2)$ transition values are excellently reproduced. The nuclear superfluidity is essential to reproduce the experimental moments of inertia. The two-shears-like mechanism for the antimagnetic rotation is investigated by examining the shears angle, i.e., the closing of the two proton hole angular momenta, and its sensitive dependence on the nuclear superfluidity is revealed.
Coherent one-particle one-hole (1p1h) excitations have given us effective insights into general nuclear excitations. However, the two-particle two-hole (2p2h) excitation beyond 1p1h is now recognized as critical for the proper description of experimental data of various nuclear responses. The spin-flip charge-exchange reactions $^{48}{rm Ca}(p,n)^{48}{rm Sc}$ are investigated to clarify the role of the 2p2h effect on their cross sections. The Fermi transition of $^{48}{rm Ca}$ via the $(p,n)$ reaction is also investigated in order to demonstrate our framework. The transition density is calculated microscopically with the second Tamm-Dancoff approximation, and the distorted-wave Born approximation is employed to describe the reaction process. A phenomenological one-range Gaussian interaction is used to prepare the form factor. For the Fermi transition, our approach describes the experimental behavior of the cross section better than the Lane model, which is the conventional method. For spin-flip excitations including the GT transition, the 2p2h effect decreases the magnitude of the cross section and does not change the shape of the angular distribution. The $Delta l=2$ transition of the present reaction is found to play a negligible role. The 2p2h effect will not change the angular-distributed cross section of spin-flip responses. This is because the transition density of the Gamow-Teller response, the leading contribution to the cross section, is not significantly varied by the 2p2h effect.
77 - Sajad Ali , S. Rajbanshi , B. Das 2017
The present work reported a conclusive evidence for anti-magnetic rotational (AMR) band in an odd-odd nucleus 142Eu. Parity of the states of a quadrupole sequence in 142Eu was firmly identified from polarization measurements using the Indian National Gamma Array and lifetimes of some of the states in the same structure were measured using the Doppler shift attenuation method. The decreasing trends of the deduced quadrupole transition strength B(E2) with spin, along with increasing J(2) / B(E2) values conclusively established the origin of these states as arising from Antimagnetic rotation. The results were well reproduced by numerical calculations within the framework of a semi-classical geometric model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا