Do you want to publish a course? Click here

Overdamped dynamics of a Brownian particle levitated in a Paul trap

139   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the dynamics of the center of mass of a Brownian particle levitated in a Paul trap. We focus on the overdamped regime in the context of levitodynamics, comparing theory with our numerical simulations and experimental data from a nanoparticle in a Paul trap. We provide an exact analytical solution to the stochastic equation of motion, expressions for the standard deviation of the motion, and thermalization times by using the WKB method under two different limits. Finally, we prove the power spectral density of the motion can be approximated by that of an Ornstein-Uhlenbeck process and use the found expression to calibrate the motion of a trapped particle.



rate research

Read More

We study the dynamics of the N-particle system evolving in the XY hamiltonian mean field (HMF) model for a repulsive potential, when no phase transition occurs. Starting from a homogeneous distribution, particles evolve in a mean field created by the interaction with all others. This interaction does not change the homogeneous state of the system, and particle motion is approximately ballistic with small corrections. For initial particle data approaching a waterbag, it is explicitly proved that corrections to the ballistic velocities are in the form of independent brownian noises over a time scale diverging not slower than $N^{2/5}$ as $N to infty$, which proves the propagation of molecular chaos. Molecular dynamics simulations of the XY-HMF model confirm our analytical findings.
When an external field drives a colloidal system out of equilibrium, the ensuing colloidal response can be very complex and obtaining a detailed physical understanding often requires case-by-case considerations. In order to facilitate systematic analysis, here we present a general iterative scheme for the determination of the unique external force field that yields a prescribed inhomogeneous stationary or time-dependent flow in an overdamped Brownian many-body system. The computer simulation method is based on the exact one-body force balance equation and allows to specifically tailor both gradient and rotational velocity contributions, as well as to freely control the one-body density distribution. Hence compressibility of the flow field can be fully adjusted. The practical convergence to a unique external force field demonstrates the existence of a functional map from both velocity and density to external force field, as predicted by the power functional variational framework. In equilibrium, the method allows to find the conservative force field that generates a prescribed target density profile, and hence implements the Mermin-Evans classical density functional map from density distribution to external potential. The conceptual tools developed here enable one to gain detailed physical insight into complex flow behaviour, as we demonstrate in prototypical situations.
We study the position distribution of a single active Brownian particle (ABP) on the plane. We show that this distribution has a compact support, the boundary of which is an expanding circle. We focus on a short-time regime and employ the optimal fluctuation method (OFM) to study large deviations of the particle position coordinates $x$ and $y$. We determine the optimal paths of the ABP, conditioned on reaching specified values of $x$ and $y$, and the large deviation functions of the marginal distributions of $x$, and of $y$. These marginal distributions match continuously with near tails of the $x$ and $y$ distributions of typical fluctuations, studied earlier. We also calculate the large deviation function of the joint $x$ and $y$ distribution $P(x,y,t)$ in a vicinity of a special zero-noise point, and show that $ln P(x,y,t)$ has a nontrivial self-similar structure as a function of $x$, $y$ and $t$. The joint distribution vanishes extremely fast at the expanding circle, exhibiting an essential singularity there. This singularity is inherited by the marginal $x$- and $y$-distributions. We argue that this fingerprint of the short-time dynamics remains there at all times.
177 - A. Hashemloo , C. M. Dion 2015
We present models for a heteronuclear diatomic molecular ion in a linear Paul trap in a rigid-rotor approximation, one purely classical, the other where the center-of-mass motion is treated classically while rotational motion is quantized. We study the rotational dynamics and their influence on the motion of the center-of-mass, in the presence of the coupling between the permanent dipole moment of the ion and the trapping electric field. We show that the presence of the permanent dipole moment affects the trajectory of the ion, and that it departs from the Mathieu equation solution found for atomic ions. For the case of quantum rotations, we also evidence the effect of the above-mentioned coupling on the rotational states of the ion.
153 - D. Chakraborty 2012
We investigate the persistence probability of a Brownian particle in a harmonic potential, which decays to zero at long times -- leading to an unbounded motion of the Brownian particle. We consider two functional forms for the decay of the confinement, an exponential and an algebraic decay. Analytical calculations and numerical simulations show, that for the case of the exponential relaxation, the dynamics of Brownian particle at short and long times are independent of the parameters of the relaxation. On the contrary, for the algebraic decay of the confinement, the dynamics at long times is determined by the exponent of the decay. Finally, using the two-time correlation function for the position of the Brownian particle, we construct the persistence probability for the Brownian walker in such a scenario.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا