Do you want to publish a course? Click here

Hot Subdwarf All Southern Sky Fast Transit Survey with the Evryscope

82   0   0.0 ( 0 )
 Added by Jeff Ratzloff
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have conducted a survey of candidate hot subdwarf stars in the southern sky searching for fast transits, eclipses, and sinusoidal like variability in the Evryscope light curves. The survey aims to detect transit signals from Neptune size planets to gas-giants, and eclipses from M-dwarfs and brown dwarfs. The other variability signals are primarily expected to be from compact binaries and reflection effect binaries. Due to the small size of hot subdwarfs, transit and eclipse signals are expected to last only twenty minutes, but with large signal depths (up to completely eclipsing if the orientation is edge on). With its 2-minute cadence and continuous observing Evryscope is well placed to recover these fast transits and eclipses. The very large field of view (8150 sq. deg.) is critical to obtain enough hot subdwarf targets, despite their rarity. We identified 11,000 potential hot subdwarfs from the 9.3M Evryscope light curves for sources brighter than mg = 15. With our machine learning spectral classifier, we flagged high-confidence targets and estimate the total hot subdwarfs in the survey to be 1400. The light curve search detected three planet transit candidates, shown to have stellar companions from followup analysis. We discovered several new compact binaries (including two with unseen degenerate companions, and several others with potentially rare secondaries), two eclipsing binaries with M-dwarf companions, as well as new reflection effect binaries and others with sinusoidal like variability. The hot subdwarf discoveries identified here are spectroscopically confirmed and we verified the Evryscope discovery light curve with TESS light curves when available. Four of the discoveries are in the process of being published in separate followup papers, and we discuss the followup potential of several of the other discoveries.



rate research

Read More

We search for superflares from 4,068 cool stars in 2+ years of Evryscope photometry, focusing on those with high-cadence data from both Evryscope and TESS. The Evryscope array of small telescopes observed 575 flares from 284 stars, with a median energy of 10^34.0 erg. Since 2016, Evryscope has enabled the detection of rare events from all stars observed by TESS through multi-year, high-cadence continuous observing. We report ~2X the previous largest number of 10^34 erg high-cadence flares from nearby cool stars. We find 8 flares with amplitudes of 3+ g magnitudes, with the largest reaching 5.6 magnitudes and releasing 10^36.2 erg. We observe a 10^34 erg superflare from TOI-455 (LTT 1445), a mid-M with a rocky planet candidate. We measure the superflare rate per flare-star and quantify the average flaring of active stars as a function of spectral type, including superflare rates, FFDs, and typical flare amplitudes in g. We confirm superflare morphology is broadly consistent with magnetic re-connection. We estimate starspot coverage necessary to produce superflares, and hypothesize maximum-allowed superflare energies and waiting-times between flares corresponding to 100% coverage of the stellar hemisphere. We observe decreased flaring at high galactic latitudes. We explore the effects of superflares on ozone loss to planetary atmospheres: we observe 1 superflare with sufficient energy to photo-dissociate all ozone in an Earth-like atmosphere in one event. We find 17 stars that may deplete an Earth-like atmosphere via repeated flaring. Of the 1822 stars around which TESS may discover temperate rocky planets, we observe 14.6% +/- 2% emit large flares.
Current time-domain wide-field sky surveys generally operate with few-degree-sized fields and take many individual images to cover large sky areas each night. We present the design and project status of the Evryscope (wide-seer), which takes a different approach: using an array of 7cm telescopes to form a single wide-field-of-view pointed at every part of the accessible sky simultaneously and continuously. The Evryscope is a gigapixel-scale imager with a 9060 sq. deg. field of view and has an etendue three times larger than the Pan-STARRS sky survey. The system will search for transiting exoplanets around bright stars, M-dwarfs and white dwarfs, as well as detecting microlensing events, nearby supernovae, and gamma-ray burst afterglows. We present the current project status, including an update on the Evryscope prototype telescopes we have been operating for the last three years in the Canadian High Arctic.
We present a far-infrared all-sky atlas from a sensitive all-sky survey using the Japanese $AKARI$ satellite. The survey covers $> 99$% of the sky in four photometric bands centred at 65 $mu$m, 90 $mu$m, 140 $mu$m, and 160 $mu$m with spatial resolutions ranging from 1 to 1.5 arcmin. These data provide crucial information for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since significant portion of its energy is emitted between $sim$50 and 200 $mu$m. The large-scale distribution of interstellar clouds, their thermal dust temperatures and column densities, can be investigated with the improved spatial resolution compared to earlier all-sky survey observations. In addition to the point source distribution, the large-scale distribution of ISM cirrus emission, and its filamentary structure, are well traced. We have made the first public release of the full-sky data to provide a legacy data set for use by the astronomical community.
We present the S-Band Polarization All Sky Survey (S-PASS), a survey of polarized radio emission over the southern sky at Dec~$< -1^circ$ taken with the Parkes radio telescope at 2.3~GHz. The main aim was to observe at a frequency high enough to avoid strong depolarization at intermediate Galactic latitudes (still present at 1.4 GHz) to study Galactic magnetism, but low enough to retain ample Signal-to-Noise ratio (S/N) at high latitudes for extragalactic and cosmological science. We developed a new scanning strategy based on long azimuth scans, and a corresponding map-making procedure to make recovery of the overall mean signal of Stokes $Q$ and $U$ possible, a long-standing problem with polarization observations. We describe the scanning strategy, map-making procedure, and validation tests. The overall mean signal is recovered with a precision better than 0.5%. The maps have a mean sensitivity of 0.81 mK on beam--size scales and show clear polarized signals, typically to within a few degrees of the Galactic plane, with ample S/N everywhere (the typical signal in low emission regions is 13 mK, and 98.6% of the pixels have S/N $> 3$). The largest depolarization areas are in the inner Galaxy, associated with the Sagittarius Arm. We have also computed a Rotation Measure map combining S-PASS with archival data from the WMAP and Planck experiments. A Stokes $I$ map has been generated, with a sensitivity limited to the confusion level of 9 mK.
The on-going X-ray all-sky survey with the eROSITA instrument will yield large galaxy cluster samples, which will bring strong constraints on cosmological parameters. In particular, the survey holds great promise to investigate the tension between CMB and low-redshift measurements. The current bottleneck preventing the full exploitation of the survey data is the systematics associated with the relation between survey observable and halo mass. Numerous recent studies have shown that gas mass and core-excised X-ray luminosity exhibit very low scatter at fixed mass. We propose a new method to reconstruct these quantities from low photon count data and validate the method using extensive eROSITA-like simulations. We find that even near the detection threshold of ~50 counts the core-excised luminosity and the gas mass can be recovered with 20-30% precision, which is substantially less than the scatter of the full integrated X-ray luminosity at fixed mass. When combined with an accurate calibration of the absolute mass scale (e.g. through weak gravitational lensing), our technique reduces the systematics on cosmological parameters induced by the mass calibration.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا