Do you want to publish a course? Click here

S-band Polarization All Sky Survey (S-PASS): survey description and maps

160   0   0.0 ( 0 )
 Added by Ettore Carretti
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the S-Band Polarization All Sky Survey (S-PASS), a survey of polarized radio emission over the southern sky at Dec~$< -1^circ$ taken with the Parkes radio telescope at 2.3~GHz. The main aim was to observe at a frequency high enough to avoid strong depolarization at intermediate Galactic latitudes (still present at 1.4 GHz) to study Galactic magnetism, but low enough to retain ample Signal-to-Noise ratio (S/N) at high latitudes for extragalactic and cosmological science. We developed a new scanning strategy based on long azimuth scans, and a corresponding map-making procedure to make recovery of the overall mean signal of Stokes $Q$ and $U$ possible, a long-standing problem with polarization observations. We describe the scanning strategy, map-making procedure, and validation tests. The overall mean signal is recovered with a precision better than 0.5%. The maps have a mean sensitivity of 0.81 mK on beam--size scales and show clear polarized signals, typically to within a few degrees of the Galactic plane, with ample S/N everywhere (the typical signal in low emission regions is 13 mK, and 98.6% of the pixels have S/N $> 3$). The largest depolarization areas are in the inner Galaxy, associated with the Sagittarius Arm. We have also computed a Rotation Measure map combining S-PASS with archival data from the WMAP and Planck experiments. A Stokes $I$ map has been generated, with a sensitivity limited to the confusion level of 9 mK.



rate research

Read More

We present a far-infrared all-sky atlas from a sensitive all-sky survey using the Japanese $AKARI$ satellite. The survey covers $> 99$% of the sky in four photometric bands centred at 65 $mu$m, 90 $mu$m, 140 $mu$m, and 160 $mu$m with spatial resolutions ranging from 1 to 1.5 arcmin. These data provide crucial information for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since significant portion of its energy is emitted between $sim$50 and 200 $mu$m. The large-scale distribution of interstellar clouds, their thermal dust temperatures and column densities, can be investigated with the improved spatial resolution compared to earlier all-sky survey observations. In addition to the point source distribution, the large-scale distribution of ISM cirrus emission, and its filamentary structure, are well traced. We have made the first public release of the full-sky data to provide a legacy data set for use by the astronomical community.
Far-infrared observations provide crucial data for the investigation and characterisation of the properties of dusty material in the Interstellar Medium (ISM), since most of its energy is emitted between ~100 and 200 um. We present the first all-sky image from a sensitive all-sky survey using the Japanese AKARI satellite, in the wavelength range 50 -- 180 um. Covering >99% of the sky in four photometric bands with four filters centred at 65 um, 90 um, 140 um, and 160 um wavelengths, this achieved spatial resolutions from 1 to 2 arcmin and a detection limit of <10 MJy sr-1, with absolute and relative photometric accuracies of <20%. All-sky images of the Galactic dust continuum emission enable astronomers to map the large-scale distribution of the diffuse ISM cirrus, to study its thermal dust temperature, emissivity and column density, and to measure the interaction of the Galactic radiation field and embedded objects with the surrounding ISM. In addition to the point source population of stars, protostars, star-forming regions, and galaxies, the high Galactic latitude sky is shown to be covered with a diffuse filamentary-web of dusty emission that traces the potential sites of high latitude star formation. We show that the temperature of dust particles in thermal equilibrium with the ambient interstellar radiation field can be estimated by using 90 um, 140 um, and 160 um data. The FIR AKARI full-sky maps provide a rich new data set within which astronomers can investigate the distribution of interstellar matter throughout our Galaxy, and beyond.
We demonstrate the capability of AKARI for mapping diffuse far-infrared emission and achieved reliability of all-sky diffuse map. We have conducted an all-sky survey for more than 94 % of the whole sky during cold phase of AKARI observation in 2006 Feb. -- 2007 Aug. The survey in far-infrared waveband covers 50 um -- 180 um with four bands centered at 65 um, 90 um, 140 um, and 160 um and spatial resolution of 3000 -- 4000 (FWHM).This survey has allowed us to make a revolutionary improvement compared to the IRAS survey that was conducted in 1983 in both spatial resolution and sensitivity after more than a quarter of a century. Additionally, it will provide us the first all-sky survey data with high-spatial resolution beyond 100 um. Considering its extreme importance of the AKARI far-infrared diffuse emission map, we are now investigating carefully the quality of the data for possible release of the archival data. Critical subjects in making image of diffuse emission from detected signal are the transient response and long-term stability of the far-infrared detectors. Quantitative evaluation of these characteristics is the key to achieve sensitivity comparable to or better than that for point sources (< 20 -- 95 [MJy/sr]). We describe current activities and progress that are focused on making high quality all-sky survey images of the diffuse far-infrared emission.
174 - Joshua S. Bloom 2009
We are proposing to conduct a multicolor, synoptic infrared (IR) imaging survey of the Northern sky with a new, dedicated 6.5-meter telescope at San Pedro Martir (SPM) Observatory. This initiative is being developed in partnership with astronomy institutions in Mexico and the University of California. The 4-year, dedicated survey, planned to begin in 2017, will reach more than 100 times deeper than 2MASS. The Synoptic All-Sky Infrared (SASIR) Survey will reveal the missing sample of faint red dwarf stars in the local solar neighborhood, and the unprecedented sensitivity over such a wide field will result in the discovery of thousands of z ~ 7 quasars (and reaching to z > 10), allowing detailed study (in concert with JWST and Giant Segmented Mirror Telescopes) of the timing and the origin(s) of reionization. As a time-domain survey, SASIR will reveal the dynamic infrared universe, opening new phase space for discovery. Synoptic observations of over 10^6 supernovae and variable stars will provide better distance measures than optical studies alone. SASIR also provides significant synergy with other major Astro2010 facilities, improving the overall scientific return of community investments. Compared to optical-only measurements, IR colors vastly improve photometric redshifts to z ~ 4, enhancing dark energy and dark matter surveys based on weak lensing and baryon oscillations. The wide field and ToO capabilities will enable a connection of the gravitational wave and neutrino universe - with events otherwise poorly localized on the sky - to transient electromagnetic phenomena.
The C-Band All-Sky Survey (C-BASS) is an experiment to image the whole sky in intensity and polarization at 5 GHz. The primary aim of C-BASS is to provide low-frequency all-sky maps of the Galactic emission which will enable accurate component separation analysis of both existing and future CMB intensity and polarization imaging surveys. Here we present an overview of the experiment and an update on the current status of observations. We present simulation results showing the expected improvement in the recovery of CMB and foreground signals when including C-BASS data as an additional low-frequency channel, both for intensity and polarization. We also present preliminary results from the northern part of the sky survey.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا