Do you want to publish a course? Click here

EvryFlare I: Long-term Evryscope Monitoring of Flares from the Cool Stars Across Half the Southern Sky

94   0   0.0 ( 0 )
 Added by Ward Howard
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We search for superflares from 4,068 cool stars in 2+ years of Evryscope photometry, focusing on those with high-cadence data from both Evryscope and TESS. The Evryscope array of small telescopes observed 575 flares from 284 stars, with a median energy of 10^34.0 erg. Since 2016, Evryscope has enabled the detection of rare events from all stars observed by TESS through multi-year, high-cadence continuous observing. We report ~2X the previous largest number of 10^34 erg high-cadence flares from nearby cool stars. We find 8 flares with amplitudes of 3+ g magnitudes, with the largest reaching 5.6 magnitudes and releasing 10^36.2 erg. We observe a 10^34 erg superflare from TOI-455 (LTT 1445), a mid-M with a rocky planet candidate. We measure the superflare rate per flare-star and quantify the average flaring of active stars as a function of spectral type, including superflare rates, FFDs, and typical flare amplitudes in g. We confirm superflare morphology is broadly consistent with magnetic re-connection. We estimate starspot coverage necessary to produce superflares, and hypothesize maximum-allowed superflare energies and waiting-times between flares corresponding to 100% coverage of the stellar hemisphere. We observe decreased flaring at high galactic latitudes. We explore the effects of superflares on ozone loss to planetary atmospheres: we observe 1 superflare with sufficient energy to photo-dissociate all ozone in an Earth-like atmosphere in one event. We find 17 stars that may deplete an Earth-like atmosphere via repeated flaring. Of the 1822 stars around which TESS may discover temperate rocky planets, we observe 14.6% +/- 2% emit large flares.



rate research

Read More

We measure rotation periods and sinusoidal amplitudes in Evryscope light curves for 122 two-minute K5-M4 TESS targets selected for strong flaring. The Evryscope array of telescopes has observed all bright nearby stars in the South, producing two-minute cadence light curves since 2016. Long-term, high-cadence observations of rotating flare stars probe the complex relationship between stellar rotation, starspots, and superflares. We detect periods from 0.3487 to 104 d, and observe amplitudes from 0.008 to 0.216 g mag. We find the Evryscope amplitudes are larger than those in TESS with the effect correlated to stellar mass (p-value=0.01). We compute the Rossby number (Ro), and find our sample selected for flaring has twice as many intermediate rotators (0.04<Ro<0.4) as fast (Ro<0.04) or slow (Ro>0.44) rotators; this may be astrophysical or a result of period-detection sensitivity. We discover 30 fast, 59 intermediate, and 33 slow rotators. We measure a median starspot coverage of 13% of the stellar hemisphere and constrain the minimum magnetic field strength consistent with our flare energies and spot coverage to be 500 G, with later-type stars exhibiting lower values than earlier-types. We observe a possible change in superflare rates at intermediate periods. However, we do not conclusively confirm the increased activity of intermediate rotators seen in previous studies. We split all rotators at Ro~0.2 into Prot<10 d and Prot>10 d bins to confirm short-period rotators exhibit higher superflare rates, larger flare energies, and higher starspot coverage than do long-period rotators, at p-values of 3.2 X 10^-5, 1.0 X 10^-5, and 0.01, respectively.
We have conducted a survey of candidate hot subdwarf stars in the southern sky searching for fast transits, eclipses, and sinusoidal like variability in the Evryscope light curves. The survey aims to detect transit signals from Neptune size planets to gas-giants, and eclipses from M-dwarfs and brown dwarfs. The other variability signals are primarily expected to be from compact binaries and reflection effect binaries. Due to the small size of hot subdwarfs, transit and eclipse signals are expected to last only twenty minutes, but with large signal depths (up to completely eclipsing if the orientation is edge on). With its 2-minute cadence and continuous observing Evryscope is well placed to recover these fast transits and eclipses. The very large field of view (8150 sq. deg.) is critical to obtain enough hot subdwarf targets, despite their rarity. We identified 11,000 potential hot subdwarfs from the 9.3M Evryscope light curves for sources brighter than mg = 15. With our machine learning spectral classifier, we flagged high-confidence targets and estimate the total hot subdwarfs in the survey to be 1400. The light curve search detected three planet transit candidates, shown to have stellar companions from followup analysis. We discovered several new compact binaries (including two with unseen degenerate companions, and several others with potentially rare secondaries), two eclipsing binaries with M-dwarf companions, as well as new reflection effect binaries and others with sinusoidal like variability. The hot subdwarf discoveries identified here are spectroscopically confirmed and we verified the Evryscope discovery light curve with TESS light curves when available. Four of the discoveries are in the process of being published in separate followup papers, and we discuss the followup potential of several of the other discoveries.
Phased flaring, or the periodic occurrence of stellar flares, may probe electromagnetic star-planet interaction (SPI), binary interaction, or magnetic conditions in spots. For the first time, we explore flare periodograms for a large sample of flare stars to identify periodicity due to magnetic interactions with orbiting companions, magnetic reservoirs, or rotational phase. Previous large surveys have explored periodicity at the stellar rotation period, but we do not assume periods must correspond with rotation in this work. Two min TESS light curves of 284 cool stars are searched for periods from 1-10 d using two newly-developed periodograms. Because flares are discrete events in noisy and incomplete data, typical periodograms are not well-suited to detect phased flaring. We construct and test a new Bayesian likelihood periodogram and a modified Lomb-Scargle periodogram. We find 6 candidates with a false-alarm probability below 1%. Three targets are >3-sigma detections of flare periodicity; the others are plausible candidates which cannot be individually confirmed. Periods range from 1.35 to 6.7 d and some, but not all, correlate with the stellar rotation period or its 1/2 alias. Periodicity from 2 targets may persist from TESS Cycle 1 into Cycle 3. The periodicity does not appear to persist for the others. Long-term changes in periodicity may result from the spot evolution observed from each candidate, which suggests magnetic conditions play an important role in sustaining periodicity.
110 - G. Costigan 2012
We present the results of a variability study of accreting young stellar objects in the Chameleon I star-forming region which is based on ~300 high resolution optical spectra from the multi-object fibre spectrograph FLAMES/GIRAFFE at the ESO/VLT. Twenty five objects with spectral types from G2-M5.75 were observed 12 times over the course of 15 months. Using the emission lines Ha (6562.81 A) and Ca II (8662.1 A) as accretion indicators we found 10 accreting and 15 non-accreting objects. We derived accretion rates for all accretors in the sample using the Ha equivalent width, Ha 10% width and the CaII equivalent width. The mean amplitude of variations in derived accretion rate from Ha equivalent width was ~ 0.37 dex, from Ca II equivalent width ~0.83 dex and from Ha 10% width ~1.11 dex. Based on the large amplitude of variations in accretion rates derived from the Ha 10% width with respect to the other diagnostics, we do not consider it to be a reliable accretion rate estimator. Taking the variations in Ha equivalent width and CaII equivalent width accretion rates to be closer to the true value, they suggest that the spread which has been found around the accretion rate to stellar mass relation is not due to the variability of individual objects on time-scales of weeks to ~1 year. From these variations we can also infer that the accretion rates are stable within < 0.37 dex over time-scales of less than 15 months. A major portion of the accretion variability was found to occur on less than the shortest time-scales in our observations, 8-25 days, which is comparable with the rotation periods of these young stellar objects. This could be an indication that what we are probing is spatial structure in the accretion flows, and also suggests that observations on time-scales of ~a couple of weeks are sufficient to limit the total extent of accretion rate variations in typical young stars.
Superflares may provide the dominant source of biologically relevant UV radiation to rocky habitable zone M-dwarf planets (M-Earths), altering planetary atmospheres and conditions for surface life. The combined line and continuum flare emission has usually been approximated by a 9000 K blackbody. If superflares are hotter, then the UV emission may be 10X higher than predicted from the optical. However, it is unknown for how long M-dwarf superflares reach temperatures above 9000 K. Only a handful of M-dwarf superflares have been recorded with multi-wavelength high-cadence observations. We double the total number of events in the literature using simultaneous Evryscope and TESS observations to provide the first systematic exploration of the temperature evolution of M-dwarf superflares. We also increase the number of superflaring M-dwarfs with published time-resolved blackbody evolution by ~10X. We measure temperatures at 2 min cadence for 42 superflares from 27 K5-M5 dwarfs. We find superflare peak temperatures (defined as the mean of temperatures corresponding to flare FWHM) increase with flare energy and impulse. We find the amount of time flares emit at temperatures above 14,000 K depends on energy. We discover 43% of the flares emit above 14,000 K, 23% emit above 20,000 K and 5% emit above 30,000 K. The largest and hottest flare briefly reached 42,000 K. Some do not reach 14,000 K. During superflares, we estimate M-Earths orbiting <200 Myr stars typically receive a top-of-atmosphere UV-C flux of ~120 W m^-2 and up to 10^3 W m^-2, 100-1000X the time-averaged XUV flux from Proxima Cen.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا