Do you want to publish a course? Click here

Symmetry-breaking and spin-blockage effects on carrier dynamics in single-layer tungsten diselenide

268   0   0.0 ( 0 )
 Added by Ro-Ya Liu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding carrier creation and evolution in materials initiated by pulsed optical excitation is central to developing ultrafast optoelectronics. We demonstrate herein that the dynamic response of a system can be drastically modified when its physical dimension is reduced to the atomic scale, the ultimate limit of device miniaturization. A comparative study of single-layer (SL) tungsten diselenide(WSe2) relative to bulk WSe2 shows substantial differences in the transient response as measured by time- and angle-resolved photoemission spectroscopy (TRARPES). The conduction-band minimum in bulk WSe2, populated by optical pumping, decays promptly. The corresponding decay for SL WSe2 is much slower and exhibits two time constants. The results indicate the presence of two distinct decay channels in the SL that are correlated with the breaking of space inversion symmetry in the two-dimensional limit. This symmetry breaking lifts the spin degeneracy of the bands, which in turn causes the blockage of decay for one spin channel. The stark contrast between the single layer and the bulk illustrates the basic carrier scattering processes operating at different timescales that can be substantially modified by dimensional and symmetry-reduction effects.



rate research

Read More

We report the structural and electrical characterization of tungsten oxides formed by illuminating multi-layer tungsten diselenide (WSe2) nanosheets with an intense laser beam in the ambient environment. A noninvasive microwave impedance microscope (MIM) was used to perform electrical imaging of the samples. The local conductivity ~100 S/m of the oxidized product, measured by the MIM and conventional transport experiments, is much higher than that of the pristine WSe2, suggesting the formation of sub-stoichiometric WO3-x polycrystals with n-type carriers. With further efforts to improve the conductivity of the oxides, the laser-assisted oxidation process may be useful for patterning conductive features on WSe2 or forming electrical contacts to various transition metal dichalcogenides.
Light emission in atomically thin heterostructures is known to depend on the type of materials, number and stacking sequence of the constituent layers. Here we show that the thickness of a two-dimensional substrate can be crucial in modulating the light emission. We study the layer-dependent charge transfer in vertical heterostructures built from monolayer tungsten disulphide (WS2) on one- and two-layer epitaxial graphene, unravelling the effect that the interlayer electronic coupling has on the excitonic properties of such heterostructures. We bring evidence that the excitonic properties of WS2 can be effectively tuned by the number of supporting graphene layers. Integrating WS2 monolayers with two-layer graphene leads to a significant enhancement of the photoluminescence response, up to one order of magnitude higher compared to WS2 supported on one-layer graphene. Our findings highlight the importance of substrate engineering when constructing atomically thin layered heterostructures.
The outstanding optoelectronic and valleytronic properties of transition metal dichalcogenides (TMDs) have triggered intense research efforts by the scientific community. An alternative to induce long-range ferromagnetism (FM) in TMDs is by introducing magnetic dopants to form a dilute magnetic semiconductor. Enhancing ferromagnetism in these semiconductors not only represents a key step towards modern TMD-based spintronics, but also enables exploration of new and exciting dimensionality-driven magnetic phenomena. To this end, we show tunable ferromagnetism at room temperature and a thermally induced spin flip (TISF) in monolayers of V-doped WSe2. As vanadium concentrations increase within the WSe2 monolayers the saturation magnetization increases, and it is optimal at ~4at.% vanadium; the highest doping/alloying level ever achieved for V-doped WSe2 monolayers. The TISF occurs at ~175 K and becomes more pronounced upon increasing the temperature towards room temperature. We demonstrate that TISF can be manipulated by changing the vanadium concentration within the WSe2 monolayers. We attribute TISF to the magnetic field and temperature dependent flipping of the nearest W-site magnetic moments that are antiferromagnetically coupled to the V magnetic moments in the ground state. This is fully supported by a recent spin-polarized density functional theory calculation. Our findings pave the way for the development of novel spintronic and valleytronic nanodevices based on atomically thin magnetic semiconductors and stimulate further studies in this rapidly expanding research field of 2D magnetism.
We present a complete characterisation at the nanoscale of the growth and structure of single-layer tungsten disulfide (WS$_2$) epitaxially grown on Au(111). Following the growth process in real time with fast x-ray photoelectron spectroscopy, we obtain a singly-oriented layer by choosing the proper W evaporation rate and substrate temperature during the growth. Information about the morphology, size and layer stacking of the WS$_2$ layer were achieved by employing x-ray photoelectron diffraction and low-energy electron microscopy. The strong spin splitting in the valence band of WS$_2$ coupled with the single-orientation character of the layer make this material the ideal candidate for the exploitation of the spin and valley degrees of freedom.
Understanding defect effect on carrier dynamics is essential for both fundamental physics and potential applications of transition metal dichalcogenides. Here, the phenomenon of oxygen impurities trapping photo-excited carriers has been studied with ultrafast pump-probe spectroscopy. Oxygen impurities are intentionally created in exfoliated multilayer MoSe2 with Ar+ plasma irradiation and air exposure. After plasma treatment, the signal of transient absorption first increases and then decreases, which is a signature of defect capturing carriers. With larger density of oxygen defects, the trapping effect becomes more prominent. The trapping defect densities are estimated from the transient absorption signal, and its increasing trend in the longer-irradiated sample agrees with the results from X-ray photoelectron spectroscopy. First principle calculations with density functional theory reveal that oxygen atoms occupying Mo vacancies create mid-gap defect states, which are responsible for the carrier trapping. Our findings shed light on the important role of oxygen defects as carrier trappers in transition metal dichalcogenides, and facilitates defect engineering in relevant material and device applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا