Do you want to publish a course? Click here

Growth and Structure of Singly-Oriented Single-Layer Tungsten Disulfide on Au(111)

215   0   0.0 ( 0 )
 Added by Luca Bignardi
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a complete characterisation at the nanoscale of the growth and structure of single-layer tungsten disulfide (WS$_2$) epitaxially grown on Au(111). Following the growth process in real time with fast x-ray photoelectron spectroscopy, we obtain a singly-oriented layer by choosing the proper W evaporation rate and substrate temperature during the growth. Information about the morphology, size and layer stacking of the WS$_2$ layer were achieved by employing x-ray photoelectron diffraction and low-energy electron microscopy. The strong spin splitting in the valence band of WS$_2$ coupled with the single-orientation character of the layer make this material the ideal candidate for the exploitation of the spin and valley degrees of freedom.



rate research

Read More

The spin structure of the valence and conduction bands at the $overline{text{K}}$ and $overline{text{K}}$ valleys of single-layer WS$_2$ on Au(111) is determined by spin- and angle-resolved photoemission and inverse photoemission. The bands confining the direct band gap of 1.98 eV are out-of-plane spin polarized with spin-dependent energy splittings of 417 meV in the valence band and 16 meV in the conduction band. The sequence of the spin-split bands is the same in the valence and in the conduction bands and opposite at the $overline{text{K}}$ and the $overline{text{K}}$ high-symmetry points. The first observation explains dark excitons discussed in optical experiments, the latter points to coupled spin and valley physics in electron transport. The experimentally observed band dispersions are discussed along with band structure calculations for a freestanding single layer and for a single layer on Au(111).
We employ time- and angle-resolved photoemission spectroscopy to study the spin- and valley-selective photoexcitation and dynamics of free carriers at the K and K points in singly-oriented single layer WS$_2$/Au(111). Our results reveal that in the valence band maximum an ultimate valley polarization of free holes of 84$,$% can be achieved upon excitation with circularly polarized light at room temperature. Notably, we observe a significantly smaller valley polarization for the photoexcited free electrons in the conduction band minimum. Clear differences in the carrier dynamics between electrons and holes imply intervalley scattering processes into dark states being responsible for the efficient depolarization of the excited electron population.
The nucleation and growth of single-layer molybdenum disulfide single domain islands is investigated by in situ low-energy electron microscopy. We study the growth of micron-sized flakes and the correlated flattening process of the gold surface for three different elevated temperatures. Furthermore, the influence of surface step edges on the molybdenum disulfide growth process is revealed. We show that both island and underlying terrace grow simultaneously by pushing the surface step in the expansion process. Our findings point to an optimized growth procedure allowing for step-free single-domain single-layer islands of several micrometers in size, which is likely transferable to other transition metal dichalcogenides.
The electronic structure of epitaxial single-layer MoS$_2$ on Au(111) is investigated by angle-resolved photoemission spectroscopy, scanning tunnelling spectroscopy, and first principles calculations. While the band dispersion of the supported single-layer is close to a free-standing layer in the vicinity of the valence band maximum at $bar{K}$ and the calculated electronic band gap on Au(111) is similar to that calculated for the free-standing layer, significant modifications to the band structure are observed at other points of the two-dimensional Brillouin zone: At $bar{Gamma}$, the valence band maximum has a significantly higher binding energy than in the free MoS$_2$ layer and the expected spin-degeneracy of the uppermost valence band at the $bar{M}$ point cannot be observed. These band structure changes are reproduced by the calculations and can be explained by the detailed interaction of the out-of-plane MoS$_2$ orbitals with the substrate.
We report direct measurements via angle-resolved photoemission spectroscopy (ARPES) of the electronic dispersion of single-layer CoO$_2$. The Fermi contour consists of a large hole pocket centered at the $overline{Gamma}$ point. To interpret the ARPES results, we use density functional theory (DFT) in combination with the multi-orbital Gutzwiller Approximation (DFT+GA), basing our calculations on crystalline structure parameters derived from x-ray photoelectron diffraction and low-energy electron diffraction. Our calculations are in good agreement with the measured dispersion. We conclude that the material is a moderately correlated metal. We also discuss substrate effects, and the influence of hydroxylation on the CoO$_2$ single-layer electronic structure.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا