Do you want to publish a course? Click here

Non-leptonic B-decays at two loops in QCD Factorization

70   0   0.0 ( 0 )
 Added by Tobias Huber
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We report on the calculation of the two-loop penguin amplitudes in non-leptonic B decays in the framework of QCD factorization. We discuss the computation of this genuine two-loop, two-scale problem and provide details on the matching from QCD onto SCET, the evaluation of the master integrals, and the convolution of the hard scattering kernels with the light-cone distribution amplitude of the light meson. Preliminary results on the size of the two-loop correction are given.

rate research

Read More

85 - Tobias Huber 2016
We evaluate in the framework of QCD factorization the two-loop vertex corrections to the decays $bar{B}_{(s)}to D_{(s)}^{(ast)+} , L^-$ and $Lambda_b to Lambda_c^+ , L^-$, where $L$ is a light meson from the set ${pi,rho,K^{(ast)},a_1}$. These decays are paradigms of the QCD factorization approach since only the colour-allowed tree amplitude contributes at leading power. Hence they are sensitive to the size of power corrections once their leading-power perturbative expansion is under control. Here we compute the two-loop ${cal O}(alpha_s^2)$ correction to the leading-power hard scattering kernels, and give the results for the convoluted kernels almost completely analytically. Our newly computed contribution amounts to a positive shift of the magnitude of the tree amplitude by $sim 2$%. We then perform an extensive phenomenological analysis to NNLO in QCD factorization, using the most recent values for non-perturbative input parameters. Given the fact that the NNLO perturbative correction and updated values for form factors increase the theory prediction for branching ratios, while experimental central values have at the same time decreased, we reanalyze the role and potential size of power corrections by means of appropriately chosen ratios of decay channels.
We provide a comprehensive test of factorization in the heavy-heavy $B$ decays motivated by the recent experimental data from BELLE and BABAR collaborations. The penguin effects are not negligible in the B decays with two pseudoscalar mesons. The direct CP asymmetries are found to be a few percent. We give estimates on the weak annihilation contributions by analogy to the observed annihilation-dominated processes. The $N_c$ insensitivity of branching ratios indicates that the soft final state interactions are not dominant. We also study the polarizations in $Bto D^*D_{(s)}^*$ decays. The power law shows that the transverse perpendicular polarization fraction is small. The effects of the heavy quark symmetry breaking caused by the perturbative QCD and power corrections on the transverse polarization are also investigated.
We report on a two-flavour lattice QCD study of the D_s and D_s^* leptonic decays parameterized by the decay constants f_{D_s} and f_{D_s^*}. As the phenomenology in the D_s sector seems very promising in the next years with the experiments LHCb and Belle II, it is worth putting a big effort in lattice computations regarding its non-perturbative QCD contributions. Before examining more challenging processes such as hadron-hadron transitions, a natural first step is to address some basic aspects in the context of leptonic decays, where systematic uncertainties from excited state contaminations and cut-off effects in the computation of charmed meson decay matrix elements can be investigated in a more straightforward setting.
120 - M. Beneke 2008
We calculate the two-loop QCD correction to the form factors of on-shell b-quark decay to an energetic massless quark, which constitutes the last missing piece required for an O(alpha_s^2) determination of |V_ub| from inclusive semi-leptonic bar B --> X_u l nu decays in the shape-function region.
125 - A.G. Akeroyd 2002
High Luminosity upgrades of the KEK-B collider are being discussed. We consider the role of the purely leptonic decays B^pm -> l^pm nu and B^0 -> l+l- in motivating such an upgrade. These decays are very sensitive to R parity violating extensions of the MSSM, and we show that future runs of the KEK-B factory can be competitive with high energy colliders for probing such models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا