High Luminosity upgrades of the KEK-B collider are being discussed. We consider the role of the purely leptonic decays B^pm -> l^pm nu and B^0 -> l+l- in motivating such an upgrade. These decays are very sensitive to R parity violating extensions of the MSSM, and we show that future runs of the KEK-B factory can be competitive with high energy colliders for probing such models.
Radiative and leptonic decays of B-mesons represent an excellent laboratory for the search for New Physics. I present here recent results on radiative and leptonic decays from the Belle and BABAR collaborations.
A search for the decays $B^0_sto e^+e^-$ and $B^0to e^+e^-$ is performed using data collected with the LHCb experiment in proton-proton collisions at center-of-mass energies of $7$, $8$ and $13,text{TeV}$, corresponding to integrated luminosities of $1$, $2$ and $2,text{fb}^{-1}$, respectively. No signal is observed. Assuming no contribution from $B^0to e^+e^-$ decays, an upper limit of $mathcal{B}(B^0_sto e^+e^-)<9.4,(11.2)times10^{-9}$ is obtained at $90,(95),%$ confidence level. If no $B^0_sto e^+e^-$ contribution is assumed, a limit of $mathcal{B}(B^0to e^+e^-)<2.5,(3.0)times10^{-9}$ is determined at $90,(95),%$ confidence level. These upper limits are more than one order of magnitude lower than the previous values.
We present a search for the decays B+ -> mu+ nu_mu and B+ -> e+ nu_e in a 253 fb-1 data sample collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy B factory. We find no significant evidence for a signal and set 90% confidence level upper limits of B(B+ -> mu+ nu_mu) < 1.7 x 10^{-6} and B(B+ -> e+ nu_e) < 9.8 x 10^{-7}.