Do you want to publish a course? Click here

Signal propagation on $kappa$-Minkowski spacetime and non-local two-point functions

80   0   0.0 ( 0 )
 Added by Michele Arzano
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We study the propagation of quantum fields on $kappa$-Minkowsi spacetime. Starting from the non-commutative partition function for a free field written in momentum space we derive the Feynman propagator and analyze the non-trivial singularity structure determined by the group manifold geometry of momentum space. The additional contributions due to such singularity structure result in a deformed field propagation which can be alternatively described in terms of an ordinary field propagation determined by a source with a blurred spacetime profile. We show that the $kappa$-deformed Feynman propagator can be written in terms of vacuum expectation values of a commutative non-local quantum field. For sub-Planckian modes the $kappa$-deformed propagator corresponds to the vacuum expectation value of the time-ordered product of non-local field operators while for trans-Plankian modes this is replaced by the Hadamard two-point function, the vacuum expectation value of the anti-commutator of non-local field operators.



rate research

Read More

Using the methods of ordinary quantum mechanics we study $kappa$-Minkowski space as a quantum space described by noncommuting self-adjoint operators, following and enlarging arXiv:1811.08409. We see how the role of Fourier transforms is played in this case by Mellin transforms. We briefly discuss the role of transformations and observers.
A useful concept in the development of physical models on the $kappa$-Minkowski noncommutative spacetime is that of a curved momentum space. This structure is not unique: several inequivalent momentum space geometries have been identified. Some are associated to a different assumption regarding the signature of spacetime (i.e. Lorentzian vs. Euclidean), but there are inequivalent momentum spaces that can be associated to the same signature and even the same group of symmetries. Moreover, in the literature there are two approaches to the definition of these momentum spaces, one based on the right- (or left-)invariant metrics on the Lie group generated by the $kappa$-Minkowski algebra. The other is based on the construction of $5$-dimensional matrix representation of the $kappa$-Minkowski coordinate algebra. Neither approach leads to a unique construction. Here, we find the relation between these two approaches and introduce a unified approach, capable of describing all momentum spaces, and identify the corresponding quantum group of spacetime symmetries. We reproduce known results and get a few new ones. In particular, we describe the three momentum spaces associated to the $kappa$-Poincare group, which are half of a de Sitter, anti-de Sitter or Minkowski space, and we identify what distinguishes them. Moreover, we find a new momentum space with the geometry of a light cone, associated to a $kappa$-deformation of the Carroll group.
In this paper we recall the construction of scalar field action on $kappa$-Minkowski space-time and investigate its properties. In particular we show how the co-product of $kappa$-Poincare algebra of symmetries arises from the analysis of the symmetries of the action, expressed in terms of Fourier transformed fields. We also derive the action on commuting space-time, equivalent to the original one. Adding the self-interaction $Phi^4$ term we investigate the modified conservation laws. We show that the local interactions on $kappa$-Minkowski space-time give rise to 6 inequivalent ways in which energy and momentum can be conserved at four-point vertex. We discuss the relevance of these results for Doubly Special Relativity.
136 - A. Borowiec 2009
Two one-parameter families of twists providing kappa-Minkowski * -product deformed spacetime are considered: Abelian and Jordanian. We compare the derivation of quantum Minkowski space from two perspectives. The first one is the Hopf module algebra point of view, which is strictly related with Drinfelds twisting tensor technique. The other one relies on an appropriate extension of deformed realizations of nondeformed Lorentz algebra by the quantum Minkowski algebra. This extension turns out to be de Sitter Lie algebra. We show the way both approaches are related. The second path allows us to calculate deformed dispersion relations for toy models ensuing from different twist parameters. In the Abelian case one recovers kappa-Poincare dispersion relations having numerous applications in doubly special relativity. Jordanian twists provide a new type of dispersion relations which in the minimal case (related to Weyl-Poincare algebra) takes an energy-dependent linear mass deformation form.
We revisit the notion of quantum Lie algebra of symmetries of a noncommutative spacetime, its elements are shown to be the generators of infinitesimal transformations and are naturally identified with physical observables. Wave equations on noncommutative spaces are derived from a quantum Hodge star operator. This general noncommutative geometry construction is then exemplified in the case of k-Minkowski spacetime. The corresponding quantum Poincare-Weyl Lie algebra of infinitesimal translations, rotations and dilatations is obtained. The dAlembert wave operator coincides with the quadratic Casimir of quantum translations and it is deformed as in Deformed Special Relativity theories. Also momenta (infinitesimal quantum translations) are deformed, and correspondingly the Einstein-Planck relation and the de Broglie one. The energy-momentum relations (dispersion relations) are consequently deduced. These results complement those of the phenomenological literature on the subject.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا