No Arabic abstract
Creating realistic human videos entails the challenge of being able to simultaneously generate both appearance, as well as motion. To tackle this challenge, we introduce G$^{3}$AN, a novel spatio-temporal generative model, which seeks to capture the distribution of high dimensional video data and to model appearance and motion in disentangled manner. The latter is achieved by decomposing appearance and motion in a three-stream Generator, where the main stream aims to model spatio-temporal consistency, whereas the two auxiliary streams augment the main stream with multi-scale appearance and motion features, respectively. An extensive quantitative and qualitative analysis shows that our model systematically and significantly outperforms state-of-the-art methods on the facial expression datasets MUG and UvA-NEMO, as well as the Weizmann and UCF101 datasets on human action. Additional analysis on the learned latent representations confirms the successful decomposition of appearance and motion. Source code and pre-trained models are publicly available.
Video generation is an inherently challenging task, as it requires modeling realistic temporal dynamics as well as spatial content. Existing methods entangle the two intrinsically different tasks of motion and content creation in a single generator network, but this approach struggles to simultaneously generate plausible motion and content. To im-prove motion modeling in video generation tasks, we propose a two-stream model that disentangles motion generation from content generation, called a Two-Stream Variational Adversarial Network (TwoStreamVAN). Given an action label and a noise vector, our model is able to create clear and consistent motion, and thus yields photorealistic videos. The key idea is to progressively generate and fuse multi-scale motion with its corresponding spatial content. Our model significantly outperforms existing methods on the standard Weizmann Human Action, MUG Facial Expression, and VoxCeleb datasets, as well as our new dataset of diverse human actions with challenging and complex motion. Our code is available at https://github.com/sunxm2357/TwoStreamVAN/.
In this work we introduce Deforming Autoencoders, a generative model for images that disentangles shape from appearance in an unsupervised manner. As in the deformable template paradigm, shape is represented as a deformation between a canonical coordinate system (`template) and an observed image, while appearance is modeled in `canonical, template, coordinates, thus discarding variability due to deformations. We introduce novel techniques that allow this approach to be deployed in the setting of autoencoders and show that this method can be used for unsupervised group-wise image alignment. We show experiments with expression morphing in humans, hands, and digits, face manipulation, such as shape and appearance interpolation, as well as unsupervised landmark localization. A more powerful form of unsupervised disentangling becomes possible in template coordinates, allowing us to successfully decompose face images into shading and albedo, and further manipulate face images.
We study the problem of unsupervised discovery and segmentation of object parts, which, as an intermediate local representation, are capable of finding intrinsic object structure and providing more explainable recognition results. Recent unsupervised methods have greatly relaxed the dependency on annotated data which are costly to obtain, but still rely on additional information such as object segmentation mask or saliency map. To remove such a dependency and further improve the part segmentation performance, we develop a novel approach by disentangling the appearance and shape representations of object parts followed with reconstruction losses without using additional object mask information. To avoid degenerated solutions, a bottleneck block is designed to squeeze and expand the appearance representation, leading to a more effective disentanglement between geometry and appearance. Combined with a self-supervised part classification loss and an improved geometry concentration constraint, we can segment more consistent parts with semantic meanings. Comprehensive experiments on a wide variety of objects such as face, bird, and PASCAL VOC objects demonstrate the effectiveness of the proposed method.
In this work, we introduce an unconditional video generative model, InMoDeGAN, targeted to (a) generate high quality videos, as well as to (b) allow for interpretation of the latent space. For the latter, we place emphasis on interpreting and manipulating motion. Towards this, we decompose motion into semantic sub-spaces, which allow for control of generated samples. We design the architecture of InMoDeGAN-generator in accordance to proposed Linear Motion Decomposition, which carries the assumption that motion can be represented by a dictionary, with related vectors forming an orthogonal basis in the latent space. Each vector in the basis represents a semantic sub-space. In addition, a Temporal Pyramid Discriminator analyzes videos at different temporal resolutions. Extensive quantitative and qualitative analysis shows that our model systematically and significantly outperforms state-of-the-art methods on the VoxCeleb2-mini and BAIR-robot datasets w.r.t. video quality related to (a). Towards (b) we present experimental results, confirming that decomposed sub-spaces are interpretable and moreover, generated motion is controllable.
In this work we address the challenging problem of multiview 3D surface reconstruction. We introduce a neural network architecture that simultaneously learns the unknown geometry, camera parameters, and a neural renderer that approximates the light reflected from the surface towards the camera. The geometry is represented as a zero level-set of a neural network, while the neural renderer, derived from the rendering equation, is capable of (implicitly) modeling a wide set of lighting conditions and materials. We trained our network on real world 2D images of objects with different material properties, lighting conditions, and noisy camera initializations from the DTU MVS dataset. We found our model to produce state of the art 3D surface reconstructions with high fidelity, resolution and detail.