No Arabic abstract
We study the problem of unsupervised discovery and segmentation of object parts, which, as an intermediate local representation, are capable of finding intrinsic object structure and providing more explainable recognition results. Recent unsupervised methods have greatly relaxed the dependency on annotated data which are costly to obtain, but still rely on additional information such as object segmentation mask or saliency map. To remove such a dependency and further improve the part segmentation performance, we develop a novel approach by disentangling the appearance and shape representations of object parts followed with reconstruction losses without using additional object mask information. To avoid degenerated solutions, a bottleneck block is designed to squeeze and expand the appearance representation, leading to a more effective disentanglement between geometry and appearance. Combined with a self-supervised part classification loss and an improved geometry concentration constraint, we can segment more consistent parts with semantic meanings. Comprehensive experiments on a wide variety of objects such as face, bird, and PASCAL VOC objects demonstrate the effectiveness of the proposed method.
In this work we introduce Deforming Autoencoders, a generative model for images that disentangles shape from appearance in an unsupervised manner. As in the deformable template paradigm, shape is represented as a deformation between a canonical coordinate system (`template) and an observed image, while appearance is modeled in `canonical, template, coordinates, thus discarding variability due to deformations. We introduce novel techniques that allow this approach to be deployed in the setting of autoencoders and show that this method can be used for unsupervised group-wise image alignment. We show experiments with expression morphing in humans, hands, and digits, face manipulation, such as shape and appearance interpolation, as well as unsupervised landmark localization. A more powerful form of unsupervised disentangling becomes possible in template coordinates, allowing us to successfully decompose face images into shading and albedo, and further manipulate face images.
Co-part segmentation is an important problem in computer vision for its rich applications. We propose an unsupervised learning approach for co-part segmentation from images. For the training stage, we leverage motion information embedded in videos and explicitly extract latent representations to segment meaningful object parts. More importantly, we introduce a dual procedure of part-assembly to form a closed loop with part-segmentation, enabling an effective self-supervision. We demonstrate the effectiveness of our approach with a host of extensive experiments, ranging from human bodies, hands, quadruped, and robot arms. We show that our approach can achieve meaningful and compact part segmentation, outperforming state-of-the-art approaches on diverse benchmarks.
We consider the novel task of learning disentangled representations of object shape and appearance across multiple domains (e.g., dogs and cars). The goal is to learn a generative model that learns an intermediate distribution, which borrows a subset of properties from each domain, enabling the generation of images that did not exist in any domain exclusively. This challenging problem requires an accurate disentanglement of object shape, appearance, and background from each domain, so that the appearance and shape factors from the two domains can be interchanged. We augment an existing approach that can disentangle factors within a single domain but struggles to do so across domains. Our key technical contribution is to represent object appearance with a differentiable histogram of visual features, and to optimize the generator so that two images with the same latent appearance factor but different latent shape factors produce similar histograms. On multiple multi-domain datasets, we demonstrate our method leads to accurate and consistent appearance and shape transfer across domains.
There have been a fairly of research interests in exploring the disentanglement of appearance and shape from human images. Most existing endeavours pursuit this goal by either using training images with annotations or regulating the training process with external clues such as human skeleton, body segmentation or cloth patches etc. In this paper, we aim to address this challenge in a more unsupervised manner---we do not require any annotation nor any external task-specific clues. To this end, we formulate an encoder-decoder-like network to extract both the shape and appearance features from input images at the same time, and train the parameters by three losses: feature adversarial loss, color consistency loss and reconstruction loss. The feature adversarial loss mainly impose little to none mutual information between the extracted shape and appearance features, while the color consistency loss is to encourage the invariance of person appearance conditioned on different shapes. More importantly, our unsupervised (Unsupervised learning has many interpretations in different tasks. To be clear, in this paper, we refer unsupervised learning as learning without task-specific human annotations, pairs or any form of weak supervision.) framework utilizes learned shape features as masks which are applied to the input itself in order to obtain clean appearance features. Without using fixed input human skeleton, our network better preserves the conditional human posture while requiring less supervision. Experimental results on DeepFashion and Market1501 demonstrate that the proposed method achieves clean disentanglement and is able to synthesis novel images of comparable quality with state-of-the-art weakly-supervised or even supervised methods.
Most 3D shape completion approaches rely heavily on partial-complete shape pairs and learn in a fully supervised manner. Despite their impressive performances on in-domain data, when generalizing to partial shapes in other forms or real-world partial scans, they often obtain unsatisfactory results due to domain gaps. In contrast to previous fully supervised approaches, in this paper we present ShapeInversion, which introduces Generative Adversarial Network (GAN) inversion to shape completion for the first time. ShapeInversion uses a GAN pre-trained on complete shapes by searching for a latent code that gives a complete shape that best reconstructs the given partial input. In this way, ShapeInversion no longer needs paired training data, and is capable of incorporating the rich prior captured in a well-trained generative model. On the ShapeNet benchmark, the proposed ShapeInversion outperforms the SOTA unsupervised method, and is comparable with supervised methods that are learned using paired data. It also demonstrates remarkable generalization ability, giving robust results for real-world scans and partial inputs of various forms and incompleteness levels. Importantly, ShapeInversion naturally enables a series of additional abilities thanks to the involvement of a pre-trained GAN, such as producing multiple valid complete shapes for an ambiguous partial input, as well as shape manipulation and interpolation.