Do you want to publish a course? Click here

InMoDeGAN: Interpretable Motion Decomposition Generative Adversarial Network for Video Generation

127   0   0.0 ( 0 )
 Added by Yaohui Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this work, we introduce an unconditional video generative model, InMoDeGAN, targeted to (a) generate high quality videos, as well as to (b) allow for interpretation of the latent space. For the latter, we place emphasis on interpreting and manipulating motion. Towards this, we decompose motion into semantic sub-spaces, which allow for control of generated samples. We design the architecture of InMoDeGAN-generator in accordance to proposed Linear Motion Decomposition, which carries the assumption that motion can be represented by a dictionary, with related vectors forming an orthogonal basis in the latent space. Each vector in the basis represents a semantic sub-space. In addition, a Temporal Pyramid Discriminator analyzes videos at different temporal resolutions. Extensive quantitative and qualitative analysis shows that our model systematically and significantly outperforms state-of-the-art methods on the VoxCeleb2-mini and BAIR-robot datasets w.r.t. video quality related to (a). Towards (b) we present experimental results, confirming that decomposed sub-spaces are interpretable and moreover, generated motion is controllable.



rate research

Read More

We propose a hybrid recurrent Video Colorization with Hybrid Generative Adversarial Network (VCGAN), an improved approach to video colorization using end-to-end learning. The VCGAN addresses two prevalent issues in the video colorization domain: Temporal consistency and unification of colorization network and refinement network into a single architecture. To enhance colorization quality and spatiotemporal consistency, the mainstream of generator in VCGAN is assisted by two additional networks, i.e., global feature extractor and placeholder feature extractor, respectively. The global feature extractor encodes the global semantics of grayscale input to enhance colorization quality, whereas the placeholder feature extractor acts as a feedback connection to encode the semantics of the previous colorized frame in order to maintain spatiotemporal consistency. If changing the input for placeholder feature extractor as grayscale input, the hybrid VCGAN also has the potential to perform image colorization. To improve the consistency of far frames, we propose a dense long-term loss that smooths the temporal disparity of every two remote frames. Trained with colorization and temporal losses jointly, VCGAN strikes a good balance between color vividness and video continuity. Experimental results demonstrate that VCGAN produces higher-quality and temporally more consistent colorful videos than existing approaches.
In this work, we introduce a two-step framework for generative modeling of temporal data. Specifically, the generative adversarial networks (GANs) setting is employed to generate synthetic scenes of moving objects. To do so, we propose a two-step training scheme within which: a generator of static frames is trained first. Afterwards, a recurrent model is trained with the goal of providing a sequence of inputs to the previously trained frames generator, thus yielding scenes which look natural. The adversarial setting is employed in both training steps. However, with the aim of avoiding known training instabilities in GANs, a multiple discriminator approach is used to train both models. Results in the studied video dataset indicate that, by employing such an approach, the recurrent part is able to learn how to coherently navigate the image manifold induced by the frames generator, thus yielding more natural-looking scenes.
In this paper, we focus on the task of generating a pun sentence given a pair of word senses. A major challenge for pun generation is the lack of large-scale pun corpus to guide the supervised learning. To remedy this, we propose an adversarial generative network for pun generation (Pun-GAN), which does not require any pun corpus. It consists of a generator to produce pun sentences, and a discriminator to distinguish between the generated pun sentences and the real sentences with specific word senses. The output of the discriminator is then used as a reward to train the generator via reinforcement learning, encouraging it to produce pun sentences that can support two word senses simultaneously. Experiments show that the proposed Pun-GAN can generate sentences that are more ambiguous and diverse in both automatic and human evaluation.
117 - Bolei Zhou 2021
Great progress has been made by the advances in Generative Adversarial Networks (GANs) for image generation. However, there lacks enough understanding on how a realistic image can be generated by the deep representations of GANs from a random vector. This chapter will give a summary of recent works on interpreting deep generative models. We will see how the human-understandable concepts that emerge in the learned representation can be identified and used for interactive image generation and editing.
Creating realistic human videos entails the challenge of being able to simultaneously generate both appearance, as well as motion. To tackle this challenge, we introduce G$^{3}$AN, a novel spatio-temporal generative model, which seeks to capture the distribution of high dimensional video data and to model appearance and motion in disentangled manner. The latter is achieved by decomposing appearance and motion in a three-stream Generator, where the main stream aims to model spatio-temporal consistency, whereas the two auxiliary streams augment the main stream with multi-scale appearance and motion features, respectively. An extensive quantitative and qualitative analysis shows that our model systematically and significantly outperforms state-of-the-art methods on the facial expression datasets MUG and UvA-NEMO, as well as the Weizmann and UCF101 datasets on human action. Additional analysis on the learned latent representations confirms the successful decomposition of appearance and motion. Source code and pre-trained models are publicly available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا