Do you want to publish a course? Click here

Random walk with hyperbolic probabilities

86   0   0.0 ( 0 )
 Added by Miquel Montero
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The random walk with hyperbolic probabilities that we are introducing is an example of stochastic diffusion in a one-dimensional heterogeneous media. Although driven by site-dependent one-step transition probabilities, the process retains some of the features of a simple random walk, shows other traits that one would associate with a biased random walk and, at the same time, presents new properties not related with either of them. In particular, we show how the system is not fully ergodic, as not every statistic can be estimated from a single realization of the process. We further give a geometric interpretation for the origin of these irregular transition probabilities.



rate research

Read More

127 - L. Turban 2015
We consider a random walk on the fully-connected lattice with $N$ sites and study the time evolution of the number of distinct sites $s$ visited by the walker on a subset with $n$ sites. A record value $v$ is obtained for $s$ at a record time $t$ when the walker visits a site of the subset for the first time. The record time $t$ is a partial covering time when $v<n$ and a total covering time when $v=n$. The probability distributions for the number of records $s$, the record value $v$ and the record (covering) time $t$, involving $r$-Stirling numbers, are obtained using generating function techniques. The mean values, variances and skewnesses are deduced from the generating functions. In the scaling limit the probability distributions for $s$ and $v$ lead to the same Gaussian density. The fluctuations of the record time $t$ are also Gaussian at partial covering, when $n-v={mathrm O}(n)$. They are distributed according to the type-I Gumbel extreme-value distribution at total covering, when $v=n$. A discrete sequence of generalized Gumbel distributions, indexed by $n-v$, is obtained at almost total covering, when $n-v={mathrm O}(1)$. These generalized Gumbel distributions are crossing over to the Gaussian distribution when $n-v$ increases.
125 - L. Turban 2014
The probability distribution of the number $s$ of distinct sites visited up to time $t$ by a random walk on the fully-connected lattice with $N$ sites is first obtained by solving the eigenvalue problem associated with the discrete master equation. Then, using generating function techniques, we compute the joint probability distribution of $s$ and $r$, where $r$ is the number of sites visited only once up to time $t$. Mean values, variances and covariance are deduced from the generating functions and their finite-size-scaling behaviour is studied. Introducing properly centered and scaled variables $u$ and $v$ for $r$ and $s$ and working in the scaling limit ($ttoinfty$, $Ntoinfty$ with $w=t/N$ fixed) the joint probability density of $u$ and $v$ is shown to be a bivariate Gaussian density. It follows that the fluctuations of $r$ and $s$ around their mean values in a finite-size system are Gaussian in the scaling limit. The same type of finite-size scaling is expected to hold on periodic lattices above the critical dimension $d_{rm c}=2$.
368 - Pengbo Xu , Weihua Deng , 2019
Integral transform method (Fourier or Laplace transform, etc) is more often effective to do the theoretical analysis for the stochastic processes. However, for the time-space coupled cases, e.g., Levy walk or nonlinear cases, integral transform method may fail to be so strong or even do not work again. Here we provide Hermite polynomial expansion approach, being complementary to integral transform method. Some statistical observables of general Levy walks are calculated by the Hermite polynomial expansion approach, and the comparisons are made when both the integral transform method and the newly introduced approach work well.
345 - A.V. Plyukhin 2009
In a simple model of a continuous random walk a particle moves in one dimension with the velocity fluctuating between V and -V. If V is associated with the thermal velocity of a Brownian particle and allowed to be position dependent, the model accounts readily for the particles drift along the temperature gradient and recovers basic results of the conventional thermophoresis theory.
We investigate the effects of markovian resseting events on continuous time random walks where the waiting times and the jump lengths are random variables distributed according to power law probability density functions. We prove the existence of a non-equilibrium stationary state and finite mean first arrival time. However, the existence of an optimum reset rate is conditioned to a specific relationship between the exponents of both power law tails. We also investigate the search efficiency by finding the optimal random walk which minimizes the mean first arrival time in terms of the reset rate, the distance of the initial position to the target and the characteristic transport exponents.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا