Markov categories are a recent category-theoretic approach to the foundations of probability and statistics. Here we develop this approach further by treating infinite products and the Kolmogorov extension theorem. This is relevant for all aspects of probability theory in which infinitely many random variables appear at a time. These infinite tensor products $bigotimes_{i in J} X_i$ come in t
This paper reformulates a classical result in probability theory from the 1930s in modern categorical terms: de Finettis representation theorem is redescribed as limit statement for a chain of finite spaces in the Kleisli category of the Giry monad. This new limit is used to identify among exchangeable coalgebras the final one.
Let $(X_1,dots,X_m)$ be self-adjoint non-commutative random variables distributed according to the free Gibbs law given by a sufficiently regular convex and semi-concave potential $V$, and let $(S_1,dots,S_m)$ be a free semicircular family. We show that conditional expectations and conditional non-microstates free entropy given $X_1$, dots, $X_k$ arise as the large $N$ limit of the corresponding conditional expectations and entropy for the random matrix models associated to $V$. Then by studying conditional transport of measure for the matrix models, we construct an isomorphism $mathrm{W}^*(X_1,dots,X_m) to mathrm{W}^*(S_1,dots,S_m)$ which maps $mathrm{W}^*(X_1,dots,X_k)$ to $mathrm{W}^*(S_1,dots,S_k)$ for each $k = 1, dots, m$, and which also witnesses the Talagrand inequality for the law of $(X_1,dots,X_m)$ relative to the law of $(S_1,dots,S_m)$.
We discuss the relationship between (co)homology groups and categorical diagonalization. We consider the category of chain complexes in the category of finitely generated free modules on a commutative ring. For a fixed chain complex with zero maps as an object, a chain map from the object to another chain complex is defined, and the chain map introduce a mapping cone. We found that the fixed object is isomorphic to the (co)homology groups of the codomain of the chain map if and only if the chain map is injective to the cokernel of differentials of the codomain chain complex and the mapping cone is homotopy equivalent to zero. On the other hand, the fixed object is regarded as a categorified eigenvalue of the chain complex in the context of the categorical diagonalization introduced by B.Elias and M. Hogancamp arXiv:1801.00191v1. It is found that (co)homology groups are constructed as the eigenvalue of a chain complex.
In this paper, we use a categorical and functorial set up to model the syntax and inference of logics of algebraic signature, extending previous works on algebraisation of logics. The main feature of this work is that structurality, or invariance under substitution of variables, are modelled by functoriality in this paper, resulting in a much clearer framework for algebraisation. It also provides a very nice conceptual understanding of various existing results already established in the literatures, and derives several new results as well.
We prove game-theoretic generalizations of some well known zero-one laws. Our proofs make the martingales behind the laws explicit, and our results illustrate how martingale arguments can have implications going beyond measure-theoretic probability.