No Arabic abstract
We discuss the relationship between (co)homology groups and categorical diagonalization. We consider the category of chain complexes in the category of finitely generated free modules on a commutative ring. For a fixed chain complex with zero maps as an object, a chain map from the object to another chain complex is defined, and the chain map introduce a mapping cone. We found that the fixed object is isomorphic to the (co)homology groups of the codomain of the chain map if and only if the chain map is injective to the cokernel of differentials of the codomain chain complex and the mapping cone is homotopy equivalent to zero. On the other hand, the fixed object is regarded as a categorified eigenvalue of the chain complex in the context of the categorical diagonalization introduced by B.Elias and M. Hogancamp arXiv:1801.00191v1. It is found that (co)homology groups are constructed as the eigenvalue of a chain complex.
Prolongations of a group extension can be studied in a more general situation that we call group extensions of the co-type of a crossed module. Cohomology classification of such extensions is obtained by applying the obstruction theory of monoidal functors.
In this paper, we use a categorical and functorial set up to model the syntax and inference of logics of algebraic signature, extending previous works on algebraisation of logics. The main feature of this work is that structurality, or invariance under substitution of variables, are modelled by functoriality in this paper, resulting in a much clearer framework for algebraisation. It also provides a very nice conceptual understanding of various existing results already established in the literatures, and derives several new results as well.
Ultrafilters are useful mathematical objects having applications in nonstandard analysis, Ramsey theory, Boolean algebra, topology, and other areas of mathematics. In this note, we provide a categorical construction of ultrafilters in terms of the inverse limit of an inverse family of finite partitions; this is an elementary and intuitive presentation of a consequence of the profiniteness of Stone spaces. We then apply this construction to answer a question of Rosinger posed in arXiv:0709.0084v2 in the negative.
Markov categories are a recent category-theoretic approach to the foundations of probability and statistics. Here we develop this approach further by treating infinite products and the Kolmogorov extension theorem. This is relevant for all aspects of probability theory in which infinitely many random variables appear at a time. These infinite tensor products $bigotimes_{i in J} X_i$ come in t
In this paper we show that the strict and lax pullbacks of a 2-categorical opfibration along an arbitrary 2-functor are homotopy equivalent. We give two applications. First, we show that the strict fibers of an opfibration model the homotopy fibers. This is a version of Quillens Theorem B amenable to applications. Second, we compute the $E^2$ page of a homology spectral sequence associated to an opfibration and apply this machinery to a 2-categorical construction of $S^{-1}S$. We show that if $S$ is a symmetric monoidal 2-groupoid with faithful translations then $S^{-1}S$ models the group completion of $S$.