No Arabic abstract
When an electron or hole is in a conduction band of a crystal, it can be very different from 2, depending upon the crystalline anisotropy and the direction of the applied magnetic induction ${bf B}$. In fact, it can even be 0! To demonstrate this quantitatively, the Dirac equation is extended for a relativistic electron or hole in an orthorhombically-anisotropic conduction band with effective masses $m_j$ for $j=1,2,3$ with geometric mean $m_g=(m_1m_2m_3)^{1/3}$. The appropriate Foldy-Wouthuysen transformations are extended to evaluate the non-relativistic Hamiltonian to $O({rm m}c^2)^{-4}$, where ${rm m}c^2$ is the particles Einstein rest energy. For ${bf B}||hat{bf e}_{mu}$, the Zeeman $g_{mu}$ factor is $2{rm m}sqrt{m_{mu}}/m_g^{3/2} + O({rm m}c^2)^{-2}$. While propagating in a two-dimensional (2D) conduction band with $m_3gg m_1,m_2$, $g_{||}<<2$, consistent with recent measurements of the temperature $T$ dependence of the parallel upper critical induction $B_{c2,||}(T)$ in superconducting monolayer NbSe$_2$ and in twisted bilayer graphene. While a particle is in its conduction band of an atomically thin one-dimensional metallic chain along $hat{bf e}_{mu}$, $g<<2$ for all ${bf B}={bf abla}times{bf A}$ directions and vanishingly small for ${bf B}||hat{bf e}_{mu}$. The quantum spin Hall Hamiltonian for 2D metals with $m_1=m_2=m_{||}$ is $K[{bf E}times({bf p}-q{bf A})]_{perp}sigma_{perp}+O({rm m}c^2)^{-4}$, where ${bf E}$ and ${bf p}-q{bf A}$ are the planar electric field and gauge-invariant momentum, $q=mp|e|$ is the particles charge, $sigma_{perp}$ is the Pauli matrix normal to the layer, $K=pmmu_B/(2m_{||}c^2)$, and $mu_B$ is the Bohr magneton.
We study an effective one-dimensional quantum model that includes friction and spin-orbit coupling (SOC), and show that the model exhibits spin polarization when both terms are finite. Most important, strong spin polarization can be observed even for moderate SOC, provided that friction is strong. Our findings might help to explain the pronounced effect of chirality on spin distribution and transport in chiral molecules. In particular, our model implies static magnetic properties of a chiral molecule, which lead to Shiba-like states when a molecule is placed on a superconductor, in accordance with recent experimental data.
A spin-torque ferromagnetic resonance study is performed in epitaxial $mathrm{Fe / Ir_{15}Mn_{85}}$ bilayers with different Fe thicknesses. We measure a negative spin-Hall angle of a few percent in the antiferromagnetic IrMn in contrast to previously reported positive values. A large spin-orbit field with Rashba symmetry opposing the Oersted field is also present. Magnitudes of measured spin-orbit torques depend on the crystallographic direction of current and are correlated with the exchange bias direction set during growth. We suggest that the uncompensated moments at the Fe / IrMn interface are responsible for the observed anisotropy. Our findings highlight the importance of crystalline and magnetic structures for the spin-Hall effect in antiferromagnets.
The interplay between Rashba, Dresselhaus and Zeeman interactions in a quantum well submitted to an external magnetic field is studied by means of an accurate analytical solution of the Hamiltonian, including electron-electron interactions in a sum rule approach. This solution allows to discuss the influence of the spin-orbit coupling on some relevant quantities that have been measured in inelastic light scattering and electron-spin resonance experiments on quantum wells. In particular, we have evaluated the spin-orbit contribution to the spin splitting of the Landau levels and to the splitting of charge- and spin-density excitations. We also discuss how the spin-orbit effects change if the applied magnetic field is tilted with respect to the direction perpendicular to the quantum well.
We have measured weak antilocalization effects, universal conductance fluctuations, and Aharonov-Bohm oscillations in the two-dimensional electron gas formed in InGaAs/AlInAs heterostructures. This system possesses strong spin-orbit coupling and a high Land{e} factor. Phase-coherence lengths of 2$-$4 $mu$m at 1.5$-$4.2 K are extracted from the magnetoconductance measurements. The analysis of the coherence-sensitive data reveals that the temperature dependence of the decoherence rate complies with the dephasing mechanism originating from electron-electron interactions in all three experiments. Distinct beating patterns superimposed on the Aharonov-Bohm oscillations are observed over a wide range of magnetic fields, up to 0.7 Tesla at the relatively high temperature of 1.5 K. The possibility that these beats are due to the interplay between the Aharonov-Bohm phase and the Berry one, different for electrons of opposite spins in the presence of strong spin-orbit and Zeeman interactions in ring geometries, is carefully investigated. It appears that our data are not explained by this mechanism; rather, a few geometrically-different electronic paths within the rings width can account for the oscillations modulations.
We investigate hybrid structures based on a bilayer quantum spin Hall system in proximity to an s-wave superconductor as a platform to mimic time-reversal symmetric topological superconductors. In this bilayer setup, the induced pairing can be of intra- or inter-layer type, and domain walls of those different types of pairing potentials host Kramers partners (time-reversal conjugate pairs) of Majorana bound states. Interestingly, we discover that such topological interfaces providing Majorana bound states can also be achieved in an otherwise homogeneous system by a spatially dependent inter-layer gate voltage. This gate voltage causes the relative electron densities of the two layers to vary accordingly which suppresses the inter-layer pairing in regions with strong gate voltage. We identify particular transport signatures (zero-bias anomalies) in a five-terminal setup that are uniquely related to the presence of Kramers pairs of Majorana bound states.