No Arabic abstract
We present the supersymmetric completion of the auxiliary vector modified polynomial $f(R)$ theories in their dual scalar-tensor theory formulation that interpolate between the auxiliary vector modified polynomial $f(R)$ theories and chaotic inflation with the power-law potential $V(phi) propto phi^p$. The supersymmetrization is achieved in two steps: First, we introduce a superconformal theory for three chiral multiplets by choosing a conformal Kahler potential and a conformal superpotential. In the second step, we use one of the chiral multiplets to compensate for the superconformal symmetries and achieve the Kahler potential and the superpotential while the other two are used to realize inflation with a stable inflationary trajectory. The stability of the inflationary trajectory requires certain deformations to the Kahler potential which we discuss their compatibility against the inflationary observables from the latest Planck data.
In this work we study vacuum decay and bubble nucleation in models of $f(R)$ higher curvature gravity. Building upon the analysis of Coleman-De Luccia (CDL), we present the formalism to calculate the Euclidean action and the bounce solution for a general $f(R)$ gravity in the thin wall approximation. We calculate the size of the nucleated bubble and the decay exponent for the Starobinsky model and its higher power extensions. We have shown that in the Starobinsky model with a typical potential the nucleated bubble has a larger size in comparison to the CDL bubble and with a lower tunneling rate. However, for higher power extension of the Starobinsky model the size of the bubble and the tunneling exponent can be larger or smaller than the CDL bubble depending on the model parameters. As a counterintuitive example, we have shown that a bubble with a larger size than the CDL bubble but with a higher nucleation rate can be formed in $f(R)$ gravity.
We review the effective field theory of modified gravity in which the Lagrangian involves three dimensional geometric quantities appearing in the 3+1 decomposition of space-time. On the flat isotropic cosmological background we expand a general action up to second order in the perturbations of geometric scalars, by taking into account spatial derivatives higher than two. Our analysis covers a wide range of gravitational theories-- including Horndeski theory/its recent generalizations and the projectable/non-projectab
In literature there is a model of modified gravity in which the matter Lagrangian is coupled to the geometry via trace of the stress-energy momentum tensor $T=T_{mu}^{mu}$. This type of modified gravity is called as $f(R,T)$ in which $R$ is Ricci scalar $R=R_{mu}^{mu}$. We extend manifestly this model to include the higher derivative term $Box R$. We derived equation of motion (EOM) for the model by starting from the basic variational principle. Later we investigate FLRW cosmology for our model. We show that de Sitter solution is unstable for a generic type of $f(R,Box R, T)$ model. Furthermore we investigate an inflationary scenario based on this model. A graceful exit from inflation is guaranteed in this type of modified gravity.
We investigate cosmological dynamics based on $f(R)$ gravity in the Palatini formulation. In this study we use the dynamical system methods. We show that the evolution of the Friedmann equation reduces to the form of the piece-wise smooth dynamical system. This system is is reduced to a 2D dynamical system of the Newtonian type. We demonstrate how the trajectories can be sewn to guarantee $C^0$ extendibility of the metric similarly as `Milne-like FLRW spacetimes are $C^0$-extendible. We point out that importance of dynamical system of Newtonian type with non-smooth right-hand sides in the context of Palatini cosmology. In this framework we can investigate singularities which appear in the past and future of the cosmic evolution. We consider cosmological systems in both Einstein and Jordan frames. We show that at each frame the topological structures of phase space are different.
We have investigated if the vector field can give rise to an accelerating phase in the early universe. We consider a timelike vector field with a general quadratic kinetic term in order to preserve an isotropic background spacetime. The vector field potential is required to satisfy the three minimal conditions for successful inflation: i) $rho>0$, ii) $rho+3P < 0$ and iii) the slow-roll conditions. As an example, we consider the massive vector potential and small field type potential as like in scalar driven inflation.