No Arabic abstract
We investigate the wave effects of gravitational waves (GWs) using numerical simulations with the finite element method (FEM) based on the publicly available code {it deal.ii}. We robustly test our code using a point source monochromatic spherical wave. We examine not only the waveform observed by a local observer but also the global energy conservation of the waves. We find that our numerical results agree very well with the analytical predictions. Based on our code, we study the scattering of GWs by compact objects. Using monochromatic waves as the input source, we find that if the wavelength of GWs is much larger than the Schwarzschild radius of the compact object, the amplitude of the total scattered GWs does not change appreciably due to the strong diffraction effect, for an observer far away from the scatterer. This finding is consistent with the results reported in the literature. However, we also find that, near the scatterer, not only the amplitude of the scattered waves is very large, comparable to that of the incident waves, but also the phase of the GWs changes significantly due to the interference between the scattered and incident waves. As the evolution of the phase of GWs plays a crucial role in the matched filtering technique in extracting GW signals from the noisy background, our findings suggest that wave effects should be taken into account in the data analysis in the future low-frequency GW experiments, if GWs are scattered by nearby compact objects in our local environment.
We investigate the possibility of observing very low frequency (VLF) electromagnetic radiation produced from the vacuum by gravitational waves. We review the calculations leading to the possibility of vacuum conversion of gravitational waves into electromagnetic waves and show how this process evades the well-known prohibition against particle production from gravitational waves. Using Newman-Penrose scalars, we estimate the luminosity of this proposed electromagnetic counterpart radiation coming from gravitational waves produced by neutron star oscillations. The detection of electromagnetic counterpart radiation would provide an indirect way of observing gravitational radiation with future spacecraft missions, especially lunar orbiting probes.
Dark matter could be composed of compact dark objects (CDOs). A close binary of CDOs orbiting in the interior of solar system bodies can be a loud source of gravitational waves (GWs) for the LIGO and VIRGO detectors. We perform the first search ever for this type of signal and rule out close binaries, with separations of order 300 m, orbiting near the center of the Sun with GW frequencies (twice the orbital frequency) between 50 and 550 Hz and CDO masses above $approx 10^{-9} M_odot$. This mass limit is eight orders of magnitude lower than the mass probed in a LIGO search at extra galactic distances.
This paper reviews a phenomenological approach to the gravitational lensing by exotic objects such as the Ellis wormhole lens, where exotic lens objects may follow a non-standard form of the equation of state or may obey a modified gravity theory. A gravitational lens model is proposed in the inverse powers of the distance, such that the Schwarzschild lens and exotic lenses can be described in a unified manner as a one parameter family. As observational implications, the magnification, shear, photo-centroid motion and time delay in this lens model are discussed.
Within the landscape of modified theories of gravity, progress in understanding the behaviour of, and developing tests for, screening mechanisms has been hindered by the complexity of the field equations involved, which are nonlinear in nature and characterised by a large hierarchy of scales. This is especially true of Vainshtein screening, where the fifth force is suppressed by high-order derivative terms which dominate within a radius much larger than the size of the source, known as the Vainshtein radius. In this work, we present the numerical code $varphi$enics, building on the FEniCS library, to solve the full equations of motion from two theories of interest for screening: a model containing high-order derivative operators in the equation of motion and one characterised by nonlinear self-interactions in two coupled scalar fields. We also include functionalities that allow the computation of higher-order operators of the scalar fields in post-processing, enabling us to check that the profiles we find are consistent solutions within the effective field theory. These two examples illustrate the different challenges experienced when trying to simulate such theories numerically, and we show how these are addressed within this code. The examples in this paper assume spherical symmetry, but the techniques may be straightforwardly generalised to asymmetric configurations. This article therefore also provides a worked example of how the finite element method can be employed to solve the screened equations of motion. $varphi$enics is publicly available and can be adapted to solve other theories of screening.
The gravitational capture of a stellar-mass compact object (CO) by a supermassive black hole is a unique probe of gravity in the strong field regime. Because of the large mass ratio, we call these sources extreme-mass ratio inspirals (EMRIs). In a similar manner, COs can be captured by intermediate-mass black holes in globular clusters or dwarf galaxies. The mass ratio in this case is lower, and hence we refer to the system as an intermediate-mass ratio inspiral (IMRI). Also, sub-stellar objects such as a brown dwarf, with masses much lighter than our Sun, can inspiral into supermassive black holes such as Sgr A* at our Galactic centre. In this case, the mass ratio is extremely large and, hence, we call this system ab extremely-large mass ratio inspirals (XMRIs). All of these sources of gravitational waves will provide us with a collection of snapshots of spacetime around a supermassive black hole that will allow us to do a direct mapping of warped spacetime around the supermassive black hole, a live cartography of gravity in this extreme gravity regime. E/I/XMRIs will be detected by the future space-borne observatories like LISA. There has not been any other probe conceived, planned or even thought of ever that can do the science that we can do with these inspirals. We will discuss them from a viewpoint of relativistic astrophysics.