Do you want to publish a course? Click here

Low frequency electromagnetic radiation coming from gravitational waves generated by neutron stars

125   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the possibility of observing very low frequency (VLF) electromagnetic radiation produced from the vacuum by gravitational waves. We review the calculations leading to the possibility of vacuum conversion of gravitational waves into electromagnetic waves and show how this process evades the well-known prohibition against particle production from gravitational waves. Using Newman-Penrose scalars, we estimate the luminosity of this proposed electromagnetic counterpart radiation coming from gravitational waves produced by neutron star oscillations. The detection of electromagnetic counterpart radiation would provide an indirect way of observing gravitational radiation with future spacecraft missions, especially lunar orbiting probes.



rate research

Read More

85 - Jian-hua He 2019
We investigate the wave effects of gravitational waves (GWs) using numerical simulations with the finite element method (FEM) based on the publicly available code {it deal.ii}. We robustly test our code using a point source monochromatic spherical wave. We examine not only the waveform observed by a local observer but also the global energy conservation of the waves. We find that our numerical results agree very well with the analytical predictions. Based on our code, we study the scattering of GWs by compact objects. Using monochromatic waves as the input source, we find that if the wavelength of GWs is much larger than the Schwarzschild radius of the compact object, the amplitude of the total scattered GWs does not change appreciably due to the strong diffraction effect, for an observer far away from the scatterer. This finding is consistent with the results reported in the literature. However, we also find that, near the scatterer, not only the amplitude of the scattered waves is very large, comparable to that of the incident waves, but also the phase of the GWs changes significantly due to the interference between the scattered and incident waves. As the evolution of the phase of GWs plays a crucial role in the matched filtering technique in extracting GW signals from the noisy background, our findings suggest that wave effects should be taken into account in the data analysis in the future low-frequency GW experiments, if GWs are scattered by nearby compact objects in our local environment.
264 - Garvin Yim , D. I. Jones 2021
The problem of the gravitational radiation damping of neutron star fundamental ($f$) mode oscillations has received considerable attention. Many studies have looked at the stability of such oscillations in rapidly rotating stars, calculating the growth/decay rate of the mode amplitude. In this paper, we look at the relatively neglected problem of the radiation reaction on the spin of the star. We specialise greatly to the so-called Kelvin modes: the modes of oscillation of (initially) non-rotating incompressible stars. We find the unexpected result that the excitation of a mode of angular momentum $delta J$ on an initially non-rotating star ends up radiating an angular momentum $2 delta J$ to infinity, leaving the star itself with a bulk angular momentum of $-delta J$. This result is interesting in itself, and also will have implications for the angular momentum budgets of spinning down neutron stars, should such modes be excited.
We describe a directed search for continuous gravitational waves in data from the sixth LIGO science run. The target was the nearby globular cluster NGC 6544 at a distance of 2.7 kpc. The search covered a broad band of frequencies along with first and second frequency derivatives for a fixed sky position. The search coherently integrated data from the two LIGO interferometers over a time span of 9.2 days using the matched-filtering F-statistic. We found no gravitational-wave signals and set 95% confidence upper limits as stringent as 6.0 X 10^{-25} on intrinsic strain and 8.5 X 10^{-6} on fiducial ellipticity. These values beat the indirect limits from energy conservation for stars with characteristic spindown ages older than 300 years and are within the range of theoretical predictions for possible neutron-star ellipticities. An important feature of this search was use of a barycentric resampling algorithm which substantially reduced computational cost; this method will be used extensively in searches of Advanced LIGO and Virgo detector data.
We provide calculations and theoretical arguments supporting the emission of electromagnetic radiation from charged particles accelerated by gravitational waves (GWs). These waves have significant indirect evidence to support their existence, yet they interact weakly with ordinary matter. We show that the induced oscillations of charged particles interacting with a GW, which lead to the emission of electromagnetic radiation, will also result in wave attenuation. These ideas are supported by a small body of literature, as well as additional arguments for particle acceleration based on GW memory effects. We derive order of magnitude power calculations for various initial charge distributions accelerated by GWs. The resulting power emission is extremely small for all but very strong GWs interacting with large quantities of charge. If the results here are confirmed and supplemented, significant consequences such as attenuation of early universe GWs could result. Additionally, this effect could extend GW detection techniques into the electromagnetic regime. These explorations are worthy of study to determine the presence of such radiation, as it is extremely important to refine our theoretical framework in an era of active GW astrophysics.
We report on an all-sky search for continuous gravitational waves in the frequency band 20-2000,Hz and with a frequency time derivative in the range of $[-1.0, +0.1]times10^{-8}$,Hz/s. Such a signal could be produced by a nearby, spinning and slightly non-axisymmetric isolated neutron star in our galaxy. This search uses the LIGO data from the first six months of Advanced LIGOs and Advanced Virgos third observational run, O3. No periodic gravitational wave signals are observed, and 95% confidence-level (CL) frequentist upper limits are placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude $h_0$ are $~1.7times10^{-25}$ near 200,Hz. For a circularly polarized source (most favorable orientation), the lowest upper limits are $sim6.3times10^{-26}$. These strict frequentist upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest 95% CL upper limits on the strain amplitude are $sim1.times10^{-25}$. These upper limits improve upon our previously published all-sky results, with the greatest improvement (factor of $sim$2) seen at higher frequencies, in part because quantum squeezing has dramatically improved the detector noise level relative to the second observational run, O2. These limits are the most constraining to date over most of the parameter space searched.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا