Do you want to publish a course? Click here

Exploiting Motion Information from Unlabeled Videos for Static Image Action Recognition

108   0   0.0 ( 0 )
 Added by Yiyi Zhang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Static image action recognition, which aims to recognize action based on a single image, usually relies on expensive human labeling effort such as adequate labeled action images and large-scale labeled image dataset. In contrast, abundant unlabeled videos can be economically obtained. Therefore, several works have explored using unlabeled videos to facilitate image action recognition, which can be categorized into the following two groups: (a) enhance visual representations of action images with a designed proxy task on unlabeled videos, which falls into the scope of self-supervised learning; (b) generate auxiliary representations for action images with the generator learned from unlabeled videos. In this paper, we integrate the above two strategies in a unified framework, which consists of Visual Representation Enhancement (VRE) module and Motion Representation Augmentation (MRA) module. Specifically, the VRE module includes a proxy task which imposes pseudo motion label constraint and temporal coherence constraint on unlabeled videos, while the MRA module could predict the motion information of a static action image by exploiting unlabeled videos. We demonstrate the superiority of our framework based on four benchmark human action datasets with limited labeled data.



rate research

Read More

196 - Lifang Wu , Zhou Yang , Qi Wang 2020
Many semantic events in team sport activities e.g. basketball often involve both group activities and the outcome (score or not). Motion patterns can be an effective means to identify different activities. Global and local motions have their respective emphasis on different activities, which are difficult to capture from the optical flow due to the mixture of global and local motions. Hence it calls for a more effective way to separate the global and local motions. When it comes to the specific case for basketball game analysis, the successful score for each round can be reliably detected by the appearance variation around the basket. Based on the observations, we propose a scheme to fuse global and local motion patterns (MPs) and key visual information (KVI) for semantic event recognition in basketball videos. Firstly, an algorithm is proposed to estimate the global motions from the mixed motions based on the intrinsic property of camera adjustments. And the local motions could be obtained from the mixed and global motions. Secondly, a two-stream 3D CNN framework is utilized for group activity recognition over the separated global and local motion patterns. Thirdly, the basket is detected and its appearance features are extracted through a CNN structure. The features are utilized to predict the success or failure. Finally, the group activity recognition and success/failure prediction results are integrated using the kronecker product for event recognition. Experiments on NCAA dataset demonstrate that the proposed method obtains state-of-the-art performance.
Spatio-temporal representations in frame sequences play an important role in the task of action recognition. Previously, a method of using optical flow as a temporal information in combination with a set of RGB images that contain spatial information has shown great performance enhancement in the action recognition tasks. However, it has an expensive computational cost and requires two-stream (RGB and optical flow) framework. In this paper, we propose MFNet (Motion Feature Network) containing motion blocks which make it possible to encode spatio-temporal information between adjacent frames in a unified network that can be trained end-to-end. The motion block can be attached to any existing CNN-based action recognition frameworks with only a small additional cost. We evaluated our network on two of the action recognition datasets (Jester and Something-Something) and achieved competitive performances for both datasets by training the networks from scratch.
The existing action recognition methods are mainly based on clip-level classifiers such as two-stream CNNs or 3D CNNs, which are trained from the randomly selected clips and applied to densely sampled clips during testing. However, this standard setting might be suboptimal for training classifiers and also requires huge computational overhead when deployed in practice. To address these issues, we propose a new framework for action recognition in videos, called {em Dynamic Sampling Networks} (DSN), by designing a dynamic sampling module to improve the discriminative power of learned clip-level classifiers and as well increase the inference efficiency during testing. Specifically, DSN is composed of a sampling module and a classification module, whose objective is to learn a sampling policy to on-the-fly select which clips to keep and train a clip-level classifier to perform action recognition based on these selected clips, respectively. In particular, given an input video, we train an observation network in an associative reinforcement learning setting to maximize the rewards of the selected clips with a correct prediction. We perform extensive experiments to study different aspects of the DSN framework on four action recognition datasets: UCF101, HMDB51, THUMOS14, and ActivityNet v1.3. The experimental results demonstrate that DSN is able to greatly improve the inference efficiency by only using less than half of the clips, which can still obtain a slightly better or comparable recognition accuracy to the state-of-the-art approaches.
For action recognition learning, 2D CNN-based methods are efficient but may yield redundant features due to applying the same 2D convolution kernel to each frame. Recent efforts attempt to capture motion information by establishing inter-frame connections while still suffering the limited temporal receptive field or high latency. Moreover, the feature enhancement is often only performed by channel or space dimension in action recognition. To address these issues, we first devise a Channel-wise Motion Enhancement (CME) module to adaptively emphasize the channels related to dynamic information with a channel-wise gate vector. The channel gates generated by CME incorporate the information from all the other frames in the video. We further propose a Spatial-wise Motion Enhancement (SME) module to focus on the regions with the critical target in motion, according to the point-to-point similarity between adjacent feature maps. The intuition is that the change of background is typically slower than the motion area. Both CME and SME have clear physical meaning in capturing action clues. By integrating the two modules into the off-the-shelf 2D network, we finally obtain a Comprehensive Motion Representation (CMR) learning method for action recognition, which achieves competitive performance on Something-Something V1 & V2 and Kinetics-400. On the temporal reasoning datasets Something-Something V1 and V2, our method outperforms the current state-of-the-art by 2.3% and 1.9% when using 16 frames as input, respectively.
We propose a new method for video object segmentation (VOS) that addresses object pattern learning from unlabeled videos, unlike most existing methods which rely heavily on extensive annotated data. We introduce a unified unsupervised/weakly supervised learning framework, called MuG, that comprehensively captures intrinsic properties of VOS at multiple granularities. Our approach can help advance understanding of visual patterns in VOS and significantly reduce annotation burden. With a carefully-designed architecture and strong representation learning ability, our learned model can be applied to diverse VOS settings, including object-level zero-shot VOS, instance-level zero-shot VOS, and one-shot VOS. Experiments demonstrate promising performance in these settings, as well as the potential of MuG in leveraging unlabeled data to further improve the segmentation accuracy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا