Do you want to publish a course? Click here

Fusing Motion Patterns and Key Visual Information for Semantic Event Recognition in Basketball Videos

197   0   0.0 ( 0 )
 Added by Zhou Yang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Many semantic events in team sport activities e.g. basketball often involve both group activities and the outcome (score or not). Motion patterns can be an effective means to identify different activities. Global and local motions have their respective emphasis on different activities, which are difficult to capture from the optical flow due to the mixture of global and local motions. Hence it calls for a more effective way to separate the global and local motions. When it comes to the specific case for basketball game analysis, the successful score for each round can be reliably detected by the appearance variation around the basket. Based on the observations, we propose a scheme to fuse global and local motion patterns (MPs) and key visual information (KVI) for semantic event recognition in basketball videos. Firstly, an algorithm is proposed to estimate the global motions from the mixed motions based on the intrinsic property of camera adjustments. And the local motions could be obtained from the mixed and global motions. Secondly, a two-stream 3D CNN framework is utilized for group activity recognition over the separated global and local motion patterns. Thirdly, the basket is detected and its appearance features are extracted through a CNN structure. The features are utilized to predict the success or failure. Finally, the group activity recognition and success/failure prediction results are integrated using the kronecker product for event recognition. Experiments on NCAA dataset demonstrate that the proposed method obtains state-of-the-art performance.



rate research

Read More

107 - Yiyi Zhang , Li Niu , Ziqi Pan 2019
Static image action recognition, which aims to recognize action based on a single image, usually relies on expensive human labeling effort such as adequate labeled action images and large-scale labeled image dataset. In contrast, abundant unlabeled videos can be economically obtained. Therefore, several works have explored using unlabeled videos to facilitate image action recognition, which can be categorized into the following two groups: (a) enhance visual representations of action images with a designed proxy task on unlabeled videos, which falls into the scope of self-supervised learning; (b) generate auxiliary representations for action images with the generator learned from unlabeled videos. In this paper, we integrate the above two strategies in a unified framework, which consists of Visual Representation Enhancement (VRE) module and Motion Representation Augmentation (MRA) module. Specifically, the VRE module includes a proxy task which imposes pseudo motion label constraint and temporal coherence constraint on unlabeled videos, while the MRA module could predict the motion information of a static action image by exploiting unlabeled videos. We demonstrate the superiority of our framework based on four benchmark human action datasets with limited labeled data.
End-to-end acoustic speech recognition has quickly gained widespread popularity and shows promising results in many studies. Specifically the joint transformer/CTC model provides very good performance in many tasks. However, under noisy and distorted conditions, the performance still degrades notably. While audio-visual speech recognition can significantly improve the recognition rate of end-to-end models in such poor conditions, it is not obvious how to best utilize any available information on acoustic and visual signal quality and reliability in these models. We thus consider the question of how to optimally inform the transformer/CTC model of any time-variant reliability of the acoustic and visual information streams. We propose a new fusion strategy, incorporating reliability information in a decision fusion net that considers the temporal effects of the attention mechanism. This approach yields significant improvements compared to a state-of-the-art baseline model on the Lip Reading Sentences 2 and 3 (LRS2 and LRS3) corpus. On average, the new system achieves a relative word error rate reduction of 43% compared to the audio-only setup and 31% compared to the audiovisual end-to-end baseline.
Semantic cues and statistical regularities in real-world environment layouts can improve efficiency for navigation in novel environments. This paper learns and leverages such semantic cues for navigating to objects of interest in novel environments, by simply watching YouTube videos. This is challenging because YouTube videos dont come with labels for actions or goals, and may not even showcase optimal behavior. Our method tackles these challenges through the use of Q-learning on pseudo-labeled transition quadruples (image, action, next image, reward). We show that such off-policy Q-learning from passive data is able to learn meaningful semantic cues for navigation. These cues, when used in a hierarchical navigation policy, lead to improved efficiency at the ObjectGoal task in visually realistic simulations. We observe a relative improvement of 15-83% over end-to-end RL, behavior cloning, and classical methods, while using minimal direct interaction.
Puck localization is an important problem in ice hockey video analytics useful for analyzing the game, determining play location, and assessing puck possession. The problem is challenging due to the small size of the puck, excessive motion blur due to high puck velocity and occlusions due to players and boards. In this paper, we introduce and implement a network for puck localization in broadcast hockey video. The network leverages expert NHL play-by-play annotations and uses temporal context to locate the puck. Player locations are incorporated into the network through an attention mechanism by encoding player positions with a Gaussian-based spatial heatmap drawn at player positions. Since event occurrence on the rink and puck location are related, we also perform event recognition by augmenting the puck localization network with an event recognition head and training the network through multi-task learning. Experimental results demonstrate that the network is able to localize the puck with an AUC of $73.1 %$ on the test set. The puck location can be inferred in 720p broadcast videos at $5$ frames per second. It is also demonstrated that multi-task learning with puck location improves event recognition accuracy.
Although text recognition has significantly evolved over the years, state-of-the-art (SOTA) models still struggle in the wild scenarios due to complex backgrounds, varying fonts, uncontrolled illuminations, distortions and other artefacts. This is because such models solely depend on visual information for text recognition, thus lacking semantic reasoning capabilities. In this paper, we argue that semantic information offers a complementary role in addition to visual only. More specifically, we additionally utilize semantic information by proposing a multi-stage multi-scale attentional decoder that performs joint visual-semantic reasoning. Our novelty lies in the intuition that for text recognition, the prediction should be refined in a stage-wise manner. Therefore our key contribution is in designing a stage-wise unrolling attentional decoder where non-differentiability, invoked by discretely predicted character labels, needs to be bypassed for end-to-end training. While the first stage predicts using visual features, subsequent stages refine on top of it using joint visual-semantic information. Additionally, we introduce multi-scale 2D attention along with dense and residual connections between different stages to deal with varying scales of character sizes, for better performance and faster convergence during training. Experimental results show our approach to outperform existing SOTA methods by a considerable margin.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا