Do you want to publish a course? Click here

Learning Video Object Segmentation from Unlabeled Videos

107   0   0.0 ( 0 )
 Added by Wenguan Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We propose a new method for video object segmentation (VOS) that addresses object pattern learning from unlabeled videos, unlike most existing methods which rely heavily on extensive annotated data. We introduce a unified unsupervised/weakly supervised learning framework, called MuG, that comprehensively captures intrinsic properties of VOS at multiple granularities. Our approach can help advance understanding of visual patterns in VOS and significantly reduce annotation burden. With a carefully-designed architecture and strong representation learning ability, our learned model can be applied to diverse VOS settings, including object-level zero-shot VOS, instance-level zero-shot VOS, and one-shot VOS. Experiments demonstrate promising performance in these settings, as well as the potential of MuG in leveraging unlabeled data to further improve the segmentation accuracy.



rate research

Read More

In this paper, we propose to learn an Unsupervised Single Object Tracker (USOT) from scratch. We identify that three major challenges, i.e., moving object discovery, rich temporal variation exploitation, and online update, are the central causes of the performance bottleneck of existing unsupervised trackers. To narrow the gap between unsupervised trackers and supervised counterparts, we propose an effective unsupervised learning approach composed of three stages. First, we sample sequentially moving objects with unsupervised optical flow and dynamic programming, instead of random cropping. Second, we train a naive Siamese tracker from scratch using single-frame pairs. Third, we continue training the tracker with a novel cycle memory learning scheme, which is conducted in longer temporal spans and also enables our tracker to update online. Extensive experiments show that the proposed USOT learned from unlabeled videos performs well over the state-of-the-art unsupervised trackers by large margins, and on par with recent supervised deep trackers. Code is available at https://github.com/VISION-SJTU/USOT.
This paper addresses the problem of object discovery from unlabeled driving videos captured in a realistic automotive setting. Identifying recurring object categories in such raw video streams is a very challenging problem. Not only do object candidates first have to be localized in the input images, but many interesting object categories occur relatively infrequently. Object discovery will therefore have to deal with the difficulties of operating in the long tail of the object distribution. We demonstrate the feasibility of performing fully automatic object discovery in such a setting by mining object tracks using a generic object tracker. In order to facilitate further research in object discovery, we release a collection of more than 360,000 automatically mined object tracks from 10+ hours of video data (560,000 frames). We use this dataset to evaluate the suitability of different feature representations and clustering strategies for object discovery.
In this paper, we explore learning end-to-end deep neural trackers without tracking annotations. This is important as large-scale training data is essential for training deep neural trackers while tracking annotations are expensive to acquire. In place of tracking annotations, we first hallucinate videos from images with bounding box annotations using zoom-in/out motion transformations to obtain free tracking labels. We add video simulation augmentations to create a diverse tracking dataset, albeit with simple motion. Next, to tackle harder tracking cases, we mine hard examples across an unlabeled pool of real videos with a tracker trained on our hallucinated video data. For hard example mining, we propose an optimization-based connecting process to first identify and then rectify hard examples from the pool of unlabeled videos. Finally, we train our tracker jointly on hallucinated data and mined hard video examples. Our weakly supervised tracker achieves state-of-the-art performance on the MOT17 and TAO-person datasets. On MOT17, we further demonstrate that the combination of our self-generated data and the existing manually-annotated data leads to additional improvements.
We explore object discovery and detector adaptation based on unlabeled video sequences captured from a mobile platform. We propose a fully automatic approach for object mining from video which builds upon a generic object tracking approach. By applying this method to three large video datasets from autonomous driving and mobile robotics scenarios, we demonstrate its robustness and generality. Based on the object mining results, we propose a novel approach for unsupervised object discovery by appearance-based clustering. We show that this approach successfully discovers interesting objects relevant to driving scenarios. In addition, we perform self-supervised detector adaptation in order to improve detection performance on the KITTI dataset for existing categories. Our approach has direct relevance for enabling large-scale object learning for autonomous driving.
Recent single image unsupervised representation learning techniques show remarkable success on a variety of tasks. The basic principle in these works is instance discrimination: learning to differentiate between two augmente
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا