Do you want to publish a course? Click here

An ALMA CO(2-1) Survey of Nearby Palomar-Green Quasars

123   0   0.0 ( 0 )
 Added by Jinyi Shangguan
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The properties of the molecular gas can shed light on the physical conditions of quasar host galaxies and the effect of feedback from accreting supermassive black holes. We present a new CO(2-1) survey of 23 z<0.1 Palomar-Green quasars conducted with the Atacama Large Millimeter/submillimeter Array. CO emission was successfully detected in 91% (21/23) of the objects, from which we derive CO luminosities, molecular gas masses, and velocity line widths. Together with CO(1-0) measurements in the literature for 32 quasars (detection rate 53%), there are 15 quasars with both CO(1-0) and CO(2-1) measurements and in total 40 sources with CO measurements. We find that the line ratio R_21 = L_CO(2-1)/L_CO(1-0) is subthermal, broadly consistent with nearby galaxies and other quasars previously studied. No clear correlation is found between R_21 and the intensity of the interstellar radiation field or the luminosity of the active nucleus. As with the general galaxy population, quasar host galaxies exhibit a strong, tight, linear L_IR-L_CO relation, with a normalization consistent with that of starburst systems. We investigate the molecular-to-total gas mass fraction with the aid of total gas masses inferred from dust masses previously derived from infrared observations. Although the scatter is considerable, the current data do not suggest that the CO-to-H_2 conversion factor of quasar host galaxies significantly differs from that of normal star-forming galaxies.



rate research

Read More

We present PHANGS-ALMA, the first survey to map CO J=2-1 line emission at ~1 ~ 100pc spatial resolution from a representative sample of 90 nearby (d<~20 Mpc) galaxies that lie on or near the z=0 main sequence of star-forming galaxies. CO line emission traces the bulk distribution of molecular gas, which is the cold, star-forming phase of the interstellar medium. At the resolution achieved by PHANGS-ALMA, each beam reaches the size of a typical individual giant molecular cloud (GMC), so that these data can be used to measure the demographics, life-cycle, and physical state of molecular clouds across the population of galaxies where the majority of stars form at z=0. This paper describes the scientific motivation and background for the survey, sample selection, global properties of the targets, ALMA observations, and characteristics of the delivered ALMA data and derived data products. As the ALMA sample serves as the parent sample for parallel surveys with VLT/MUSE, HST, AstroSat, VLA, and other facilities, we include a detailed discussion of the sample selection. We detail the estimation of galaxy mass, size, star formation rate, CO luminosity, and other properties, compare estimates using different systems and provide best-estimate integrated measurements for each target. We also report the design and execution of the ALMA observations, which combine a Cycle~5 Large Program, a series of smaller programs, and archival observations. Finally, we present the first 1 resolution atlas of CO emission from nearby galaxies and describe the properties and contents of the first PHANGS-ALMA public data release.
We present a new analysis of the PG quasar sample based on Spitzer and Herschel observations. (I) Assuming PAH-based star formation luminosities (L_SF) similar to Symeonidis et al. (2016, S16), we find mean and median intrinsic AGN spectral energy distributions (SEDs). These, in the FIR, appear hotter and significantly less luminous than the S16 mean intrinsic AGN SED. The differences are mostly due to our normalization of the individual SEDs, that properly accounts for a small number of very FIR-luminous quasars. Our median, PAH-based SED represents ~ 6% increase on the 1-243 micron luminosity of the extended Mor & Netzer (2012, EM12) torus SED, while S16 find a significantly larger difference. It requires large-scale dust with T ~ 20 -- 30 K which, if optically thin and heated by the AGN, would be outside the host galaxy. (II) We also explore the black hole and stellar mass growths, using L_SF estimates from fitting Herschel/PACS observations after subtracting the EM12 torus contribution. We use rough estimates of stellar mass, based on scaling relations, to divide our sample into groups: on, below and above the star formation main sequence (SFMS). Objects on the SFMS show a strong correlation between star formation luminosity and AGN bolometric luminosity, with a logarithmic slope of ~ 0.7. Finally we derive the relative duty cycles of this and another sample of very luminous AGN at z = 2 -- 3.5. Large differences in this quantity indicate different evolutionary pathways for these two populations characterised by significantly different black hole masses.
We present a survey of the [CII] 158 $mu$m line and underlying far-infrared (FIR) dust continuum emission in a sample of 27 z>6 quasars using the Atacama Large Millimeter Array (ALMA) at ~1 resolution. The [CII] line was significantly detected (at >5-sigma) in 23 sources (85%). We find typical line luminosities of $L_{rm [CII]}=10^{9-10}$ L$_odot$, and an average line width of ~385 km/s. The [CII]-to-far-infrared luminosity ratio ([CII]/FIR) in our sources span one order of magnitude, highlighting a variety of conditions in the star-forming medium. Four quasar host galaxies are clearly resolved in their [CII] emission on a few kpc scales. Basic estimates of the dynamical masses of the host galaxies give masses between $2times10^{10}$ and $2times10^{11}$ M$_odot$, i.e., more than an order of magnitude below what is expected from local scaling relations, given the available limits on the masses of the central black holes ($>3times10^8$ M$_odot$, assuming Eddington-limited accretion). In stacked ALMA [CII] spectra of individual sources in our sample, we find no evidence of a deviation from a single Gaussian profile. The quasar luminosity does not strongly correlate with either the [CII] luminosity or equivalent width. This survey (with typical on-source integration times of 8 min) showcases the unparalleled sensitivity of ALMA at millimeter wavelengths, and offers a unique reference sample for the study of the first massive galaxies in the universe.
The extended ultraviolet (XUV) disk galaxies are one of the most interesting objects studied in the last few years. The UV emission, revealed by GALEX, extends well beyond the optical disk, after the drop of H$alpha$ emission, the usual tracer of star formation. This shows that sporadic star formation can occur in a large fraction of the HI disk, at radii up to 3 or 4 times the optical radius. In most galaxies, these regions are poor in stars and dominated by under-recycled gas, therefore bear some similarity to early stages of spiral galaxies and high-redshift galaxies. One remarkable example is M83, a nearby galaxy with an extended UV disk reaching 2 times the optical radius. It offers the opportunity to search for the molecular gas and characterise the star formation in outer disk regions, traced by the UV emission. We obtained CO(2-1) observations with ALMA of a small region in a 1.5$times$ 3 rectangle located at $r_{gal}=7.85$ over a bright UV region of M83. There is no CO detection, in spite of the abundance of HI gas, and the presence of young stars traced by their HII regions. Our spatial resolution (17pc x 13pc) was perfectly fitted to detect Giant Molecular Clouds (GMC), but none were detected. The corresponding upper limits occur in an SFR region of the Kennicutt-Schmidt diagram where dense molecular clouds are expected. Stacking our data over HI-rich regions, using the observed HI velocity, we obtain a tentative detection, corresponding to an H$_2$-to-HI mass ratio of $<$ 3 $times$ 10$^{-2}$. A possible explanation is that the expected molecular clouds are CO-dark, because of the strong UV radiation field. The latter preferentially dissociates CO with respect to H$_2$, due to the small size of the star forming clumps in the outer regions of galaxies.
Using the IRAM 30m telescope we have surveyed a $1times0.8^{circ}$ part of the Orion molecular cloud in the $^{12}$CO and $^{13}$CO (2-1) lines with a maximal spatial resolution of $sim$11 and spectral resolution of $sim$ 0.4 km~s$^{-1}$. The cloud appears filamentary, clumpy and with a complex kinematical structure. We derive an estimated mass of the cloud of 7700 M$_{text{Sun}}$ (half of which is found in regions with visual extinctions $A_V$ below $sim$10) and a dynamical age for the nebula of the order of 0.2 Myrs. The energy balance suggests that magnetic fields play an important role in supporting the cloud, at large and small scales. According to our analysis, the turbulent kinetic energy in the molecular gas due to outflows is comparable to turbulent kinetic energy resulting from the interaction of the cloud with the HII region. This latter feedback appears negative, i.e. the triggering of star formation by the HII region is inefficient in Orion. The reduced data as well as additional products such as the column density map are made available online at http://userpages.irap.omp.eu/~oberne/Olivier_Berne/Data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا