No Arabic abstract
We present a new analysis of the PG quasar sample based on Spitzer and Herschel observations. (I) Assuming PAH-based star formation luminosities (L_SF) similar to Symeonidis et al. (2016, S16), we find mean and median intrinsic AGN spectral energy distributions (SEDs). These, in the FIR, appear hotter and significantly less luminous than the S16 mean intrinsic AGN SED. The differences are mostly due to our normalization of the individual SEDs, that properly accounts for a small number of very FIR-luminous quasars. Our median, PAH-based SED represents ~ 6% increase on the 1-243 micron luminosity of the extended Mor & Netzer (2012, EM12) torus SED, while S16 find a significantly larger difference. It requires large-scale dust with T ~ 20 -- 30 K which, if optically thin and heated by the AGN, would be outside the host galaxy. (II) We also explore the black hole and stellar mass growths, using L_SF estimates from fitting Herschel/PACS observations after subtracting the EM12 torus contribution. We use rough estimates of stellar mass, based on scaling relations, to divide our sample into groups: on, below and above the star formation main sequence (SFMS). Objects on the SFMS show a strong correlation between star formation luminosity and AGN bolometric luminosity, with a logarithmic slope of ~ 0.7. Finally we derive the relative duty cycles of this and another sample of very luminous AGN at z = 2 -- 3.5. Large differences in this quantity indicate different evolutionary pathways for these two populations characterised by significantly different black hole masses.
We present VLT/SINFONI observations of 35 quasars at 2.1 < z < 3.2, the majority of which were selected from the Clusters Around Radio-Loud AGN (CARLA) survey. CARLA quasars have large CIV-based black hole (BH) masses (M(BH) > 10^9 Msun) and powerful radio emission (P(500MHz) > 27.5 W/Hz). We estimate Ha-based M(BH), finding a scatter of 0.35 dex compared to CIV. We evaluate several recipes for correcting CIV-based masses, which reduce the scatter to 0.24 dex. The radio power of the radio-loud quasars is at most weakly correlated with the interconnected quantities Ha-width, L(5100A) and M(BH), suggesting that it is governed by different physical processes. However, we do find a strong inverse correlation between CIV blueshift and radio power linked to higher Eddington ratios and L(5100A). Under standard assumptions, the BH growth time is longer than the cosmic age for many CARLA quasars, suggesting that they must have experienced more efficient growth in the past. If these BHs were growing from seeds since the epoch of reionization, it is possible that they grew at the Eddington limit like the quasars at z ~ 6-7, and then continued to grow at the reduced rates observed until z ~ 2-3. Finally, we study the relation between M(BH) and environment, finding a weak positive correlation between M(BH) and galaxy density measured by CARLA.
Quasars at $z ,=, 6$ are powered by accretion onto supermassive black holes with masses $M_{rm BH} sim 10^9 rm , M_{odot}$. Their rapid assembly requires efficient gas inflow into the galactic nucleus, sustaining black hole accretion at a rate close to the Eddington limit, but also high central star formation rates. Using a set of cosmological zoom-in hydrodynamic simulations performed with the moving mesh code Arepo, we show that $z ,=, 6$ quasar host galaxies develop extremely tightly bound stellar bulges with peak circular velocities $300$ - $500$ km s$^{-1}$ and half-mass radii $approx 0.5 , rm kpc$. Despite their high binding energy, we find that these compact bulges expand at $z , < , 6$, with their half-mass radii reaching $ approx 5$ kpc by $z , = , 3$. The circular velocity drops by factors $approx 2$ from their initial values to $200$ - $300$ km s$^{-1}$ at $z , approx , 3$ and the stellar profile undergoes a cusp-core transformation. By tracking individual stellar populations, we find that the gradual expansion of the stellar component is mainly driven by fluctuations in the gravitational potential induced by bursty AGN feedback. We also find that galaxy size growth and the development of a cored stellar profile does not occur if AGN feedback is ineffective. Our findings suggest that AGN-driven outflows may have profound implications for the internal structure of massive galaxies, possibly accounting for their size growth, the formation of cored ellipticals as well as for the saturation of the $M_{rm BH}$ - $sigma_{star}$ seen at high velocity dispersions $sigma_{star}$.
The properties of the molecular gas can shed light on the physical conditions of quasar host galaxies and the effect of feedback from accreting supermassive black holes. We present a new CO(2-1) survey of 23 z<0.1 Palomar-Green quasars conducted with the Atacama Large Millimeter/submillimeter Array. CO emission was successfully detected in 91% (21/23) of the objects, from which we derive CO luminosities, molecular gas masses, and velocity line widths. Together with CO(1-0) measurements in the literature for 32 quasars (detection rate 53%), there are 15 quasars with both CO(1-0) and CO(2-1) measurements and in total 40 sources with CO measurements. We find that the line ratio R_21 = L_CO(2-1)/L_CO(1-0) is subthermal, broadly consistent with nearby galaxies and other quasars previously studied. No clear correlation is found between R_21 and the intensity of the interstellar radiation field or the luminosity of the active nucleus. As with the general galaxy population, quasar host galaxies exhibit a strong, tight, linear L_IR-L_CO relation, with a normalization consistent with that of starburst systems. We investigate the molecular-to-total gas mass fraction with the aid of total gas masses inferred from dust masses previously derived from infrared observations. Although the scatter is considerable, the current data do not suggest that the CO-to-H_2 conversion factor of quasar host galaxies significantly differs from that of normal star-forming galaxies.
Super-massive black holes weighing up to $sim 10^9 , mathrm{M_{odot}}$ are in place by $z sim 7$, when the age of the Universe is $lesssim 1 , mathrm{Gyr}$. This implies a time crunch for their growth, since such high masses cannot be easily reached in standard accretion scenarios. Here, we explore the physical conditions that would lead to optimal growth wherein stable super-Eddington accretion would be permitted. Our analysis suggests that the preponderance of optimal conditions depends on two key parameters: the black hole mass and the host galaxy central gas density. In the high-efficiency region of this parameter space, a continuous stream of gas can accrete onto the black hole from large to small spatial scales, assuming a global isothermal profile for the host galaxy. Using analytical initial mass functions for black hole seeds, we find an enhanced probability of high-efficiency growth for seeds with initial masses $gtrsim 10^4 , mathrm{M_{odot}}$. Our picture suggests that a large population of high-$z$ lower-mass black holes that formed in the low-efficiency region, with low duty cycles and accretion rates, might remain undetectable as quasars, since we predict their bolometric luminosities to be $lesssim 10^{41} , mathrm{erg , s^{-1}}$. The presence of these sources might be revealed only via gravitational wave detections of their mergers.
The validity of the unified active galactic nuclei (AGN) model has been challenged in the last decade, especially when different types of AGNs are considered to only differ in the viewing angle to the torus. We aim to assess the importance of the viewing angle in classifying different types of Seyfert galaxies in spectral energy distribution (SED) modelling. We retrieve photometric data from publicly available astronomical databases: CDS and NED, to model SEDs with X-CIGALE in a sample of 13 173 Seyfert galaxies located at redshift range from $z=0$ to $z=3.5$, with a median redshift of $zapprox0.2$. We assess whether the estimated viewing angle from the SED models reflects different Seyfert classifications. Two AGN models with either a smooth or clumpy torus structure are adopted in this paper. We find that the viewing angle in Type-1 AGNs is better constrained than in Type-2 AGNs. Limiting the viewing angles representing these two types of AGNs do not affect the physical parameter estimates such as star-formation rate (SFR) or AGN fractional contribution ($f_{rm{AGN}}$). In addition, the viewing angle is not the most discriminating physical parameter to differentiate Seyfert types. We suggest that the observed and intrinsic AGN disc luminosity can: i) be used in $z<0.5$ studies to distinguish between Type-1 and Type-2 AGNs, and ii) explain the probable evolutionary path between these AGN types. Finally, we propose the use of X-CIGALE for AGN galaxy classification tasks. All data from the 13 173 SED fits are available at https://doi.org/10.5281/zenodo.5221764