Do you want to publish a course? Click here

The halo mass function in alternative dark matter models

146   0   0.0 ( 0 )
 Added by Mark Lovell
 Publication date 2019
  fields Physics
and research's language is English
 Authors M. R. Lovell




Ask ChatGPT about the research

The claimed detection of large amounts of substructure in lensing flux anomalies, and in Milky Way stellar stream gaps statistics, has lead to a step change in constraints on simple warm dark matter models. In this study we compute predictions for the halo mass function both for these simple models and also for comprehensive particle physics models of sterile neutrinos and dark acoustic oscillations. We show that the mass function fit of Lovell et al. underestimates the number of haloes less massive than the half-mode mass, $M_mathrm{hm}$ by a factor of 2, relative to the extended Press-Schechter (EPS) method. The alternative approach of applying EPS to the Viel et al. matter power spectrum fit instead suggests good agreement at $M_mathrm{hm}$ relative to the comprehensive model matter power spectra results, although the number of haloes with mass $<M_mathrm{hm}$ is still suppressed due to the absence of small scale power in the fitting function. Overall, we find that the number of dark matter haloes with masses $<10^{8}M_{odot}$ predicted by competitive particle physics models is underestimated by a factor of $sim2$ when applying popular fitting functions, although careful studies that follow the stripping and destruction of subhaloes will be required in order to draw robust conclusions.



rate research

Read More

We investigate and quantify the impact of mixed (cold and warm) dark matter models on large-scale structure observables. In this scenario, dark matter comes in two phases, a cold one (CDM) and a warm one (WDM): the presence of the latter causes a suppression in the matter power spectrum which is allowed by current constraints and may be detected in present-day and upcoming surveys. We run a large set of $N$-body simulations in order to build an efficient and accurate emulator to predict the aforementioned suppression with percent precision over a wide range of values for the WDM mass, $M_mathrm{wdm}$, and its fraction with respect to the totality of dark matter, $f_mathrm{wdm}$. The suppression in the matter power spectrum is found to be independent of changes in the cosmological parameters at the 2% level for $klesssim 10 h/$Mpc and $zleq 3.5$. In the same ranges, by applying a baryonification procedure on both $Lambda$CDM and CWDM simulations to account for the effect of feedback, we find a similar level of agreement between the two scenarios. We examine the impact that such suppression has on weak lensing and angular galaxy clustering power spectra. Finally, we discuss the impact of mixed dark matter on the shape of the halo mass function and which analytical prescription yields the best agreement with simulations. We provide the reader with an application to galaxy cluster number counts.
126 - Katelin Schutz 2020
Warm dark matter has recently become increasingly constrained by observational inferences about the low-mass end of the subhalo mass function, which would be suppressed by dark matter free streaming in the early Universe. In this work, we point out that a constraint can be placed on ultralight bosonic dark matter (often referred to as fuzzy dark matter) based on similar considerations. Recent limits on warm dark matter from strong gravitational lensing of quasars and from fluctuations in stellar streams separately translate to a lower limit of $sim 2.1 times 10^{-21}$ eV on the mass of an ultralight boson comprising all dark matter. These limits are complementary to constraints on ultralight dark matter from the Lyman-$alpha$ forest and are subject to a completely different set of assumptions and systematic uncertainties. Taken together, these probes strongly suggest that dark matter with a mass $sim 10^{-22}$ eV is not a viable way to reconcile differences between cold dark matter simulations and observations of structure on small scales.
126 - Mark R. Lovell 2020
Studies of flux anomalies statistics and perturbations in stellar streams have the potential to constrain models of warm dark matter (WDM), including sterile neutrinos. Producing these constraints requires a parametrization of the WDM mass function relative to that of the cold dark matter (CDM) equivalent. We use five WDM models with half-mode masses, $M_mathrm{hm}=[1.3,35]times10^{8}$~$M_{odot}$, spread across simulations of the Local Group, lensing ellipticals and the $z=2$ universe, to generate such a parametrization: we fit parameters to a functional form for the WDM-to-CDM halo mass function ratio, $n_mathrm{WDM}(M_{X})/n_mathrm{CDM}(M_{X})$, of ($1+(alpha M_mathrm{hm}/M_{X})^{beta})^{gamma}$. For $M_{X}equiv$ virial mass of central halos we obtain $alpha=2.3$, $beta=0.8$, and $gamma=-1.0$, and this fit is steeper than the extended Press-Schechter formalism predicts. For $M_{X}equiv$ mass of subhalos we instead obtain $alpha=4.2$, $beta=2.5$ and $gamma=-0.2$; in both mass definitions the scatter is $sim20$~per~cent. The second fit typically underestimates the relative abundance of $z=2$ WDM subhaloes at the tens of per cent level. We caution that robust constraints will require bespoke simulations and a careful definition of halo mass, particularly for subhalos of mass $<10^{8}M_{odot}$.
Many non-minimal dark matter scenarios lead to oscillatory features in the matter power spectrum induced by interactions either within the dark sector or with particles from the standard model. Observing such dark acoustic oscillations would therefore be a major step towards understanding dark matter. We investigate what happens to oscillatory features during the process of nonlinear structure formation. We show that at the level of the power spectrum, oscillations are smoothed out by nonlinear mode coupling, gradually disappearing towards lower redshifts. In the halo mass function, however, the same oscillations remain visible until the present epoch. As a consequence, dark acoustic oscillations could be detectable in observations that are either based on the halo mass function or on the high-redshift power spectrum. We investigate the effect of such oscillations on different observables, namely, the cluster mass function, the stellar-to-halo mass relation, and the Lyman-$alpha$ flux power spectrum. We find that dark acoustic oscillations remain visible in all of these observables, but they are very extended and of low amplitude, making it challenging to detect them as distinct features in the data.
Warm dark matter (WDM) means DM particles with mass m in the keV scale. For large scales, (structures beyond ~ 100 kpc) WDM and CDM yield identical results which agree with observations. For intermediate scales, WDM gives the correct abundance of substructures. Inside galaxy cores, below ~ 100 pc, N-body WDM classical physics simulations are incorrect because at such scales quantum WDM effects are important. WDM quantum calculations (Thomas-Fermi approach) provide galaxy cores, galaxy masses, velocity dispersions and density profiles in agreement with the observations. For a dark matter particle decoupling at thermal equilibrium (thermal relic), all evidences point out to a 2 keV particle. Remarkably enough, sterile neutrinos decouple out of thermal equilibrium with a primordial power spectrum similar to a 2 keV thermal relic when the sterile neutrino mass is about 7 keV. Therefore, WDM can be formed by 7 keV sterile neutrinos. Excitingly enough, Bulbul et al. (2014) announced the detection of a cluster X-ray emission line that could correspond to the decay of a 7.1 keV sterile neutrino and to a neutrino decay mixing angle of sin^2 2 theta ~ 7 10^{-11} . This is a further argument in favour of sterile neutrino WDM. Baryons, represent 10 % of DM or less in galaxies and are expected to give a correction to pure WDM results. The detection of the DM particle depends upon the particle physics model. Sterile neutrinos with keV scale mass (the main WDM candidate) can be detected in beta decay for Tritium and Renium and in the electron capture in Holmiun. The sterile neutrino decay into X rays can be detected observing DM dominated galaxies and through the distortion of the black-body CMB spectrum. So far, not a single valid objection arose against WDM.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا