Do you want to publish a course? Click here

Dark matter in galaxies: the dark matter particle mass is about 7 keV

173   0   0.0 ( 0 )
 Added by Hector de Vega J
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

Warm dark matter (WDM) means DM particles with mass m in the keV scale. For large scales, (structures beyond ~ 100 kpc) WDM and CDM yield identical results which agree with observations. For intermediate scales, WDM gives the correct abundance of substructures. Inside galaxy cores, below ~ 100 pc, N-body WDM classical physics simulations are incorrect because at such scales quantum WDM effects are important. WDM quantum calculations (Thomas-Fermi approach) provide galaxy cores, galaxy masses, velocity dispersions and density profiles in agreement with the observations. For a dark matter particle decoupling at thermal equilibrium (thermal relic), all evidences point out to a 2 keV particle. Remarkably enough, sterile neutrinos decouple out of thermal equilibrium with a primordial power spectrum similar to a 2 keV thermal relic when the sterile neutrino mass is about 7 keV. Therefore, WDM can be formed by 7 keV sterile neutrinos. Excitingly enough, Bulbul et al. (2014) announced the detection of a cluster X-ray emission line that could correspond to the decay of a 7.1 keV sterile neutrino and to a neutrino decay mixing angle of sin^2 2 theta ~ 7 10^{-11} . This is a further argument in favour of sterile neutrino WDM. Baryons, represent 10 % of DM or less in galaxies and are expected to give a correction to pure WDM results. The detection of the DM particle depends upon the particle physics model. Sterile neutrinos with keV scale mass (the main WDM candidate) can be detected in beta decay for Tritium and Renium and in the electron capture in Holmiun. The sterile neutrino decay into X rays can be detected observing DM dominated galaxies and through the distortion of the black-body CMB spectrum. So far, not a single valid objection arose against WDM.



rate research

Read More

151 - R. Bernabei 2010
The present DAMA/LIBRA experiment and the former DAMA/NaI have cumulatively released so far the results obtained with the data collected over 13 annual cycles (total exposure: 1.17 ton $times$ yr). They give a model independent evidence of the presence of DM particles in the galactic halo on the basis of the DM annual modulation signature at 8.9 $sigma$ C.L. for the cumulative exposure.
Anisotropies in the electromagnetic emission produced by dark matter annihilation or decay in the extragalactic sky are a recent tool in the quest for a particle dark matter evidence. We review the formalism to compute the two-point angular power spectrum in the halo-model approach and discuss the features and the relative size of the various auto- and cross-correlation signals that can be envisaged for anisotropy studies. From the side of particle dark matter signals, we consider the full multi-wavelength spectrum, from the radio emission to X-ray and gamma-ray productions. We discuss the angular power spectra of the auto-correlation of each of these signals and of the cross-correlation between any pair of them. We then extend the search to comprise specific gravitational tracers of dark matter distribution in the Universe: weak-lensing cosmic shear, large-scale-structure matter distribution and CMB-lensing. We have shown that cross-correlating a multi-wavelength dark matter signal (which is a direct manifestation of its particle physics nature) with a gravitational tracer (which is a manifestation of the presence of large amounts of unseen matter in the Universe) may offer a promising tool to demonstrate that what we call dark matter is indeed formed by elementary particles.
We present cosmological hydrodynamical simulations of the formation of dwarf galaxies in a representative sample of haloes extracted from the Millennium-II Simulation. Our six haloes have a z = 0 mass of ~10^10 solar masses and show different mass assembly histories which are reflected in different star formation histories. We find final stellar masses in the range 5 x 10^7 - 10^8 solar masses, consistent with other published simulations of galaxy formation in similar mass haloes. Our final objects have structures and stellar populations consistent with dwarf elliptical and dwarf irregular galaxies. However, in a Lambda CDM universe, 10^10 solar mass haloes must typically contain galaxies with much lower stellar mass than our simulated objects if they are to match observed galaxy abundances. The dwarf galaxies formed in our own and all other current hydrodynamical simulations are more than an order of magnitude more luminous than expected for haloes of this mass. We discuss the significance and possible implications of this result.
145 - M. R. Lovell 2019
The claimed detection of large amounts of substructure in lensing flux anomalies, and in Milky Way stellar stream gaps statistics, has lead to a step change in constraints on simple warm dark matter models. In this study we compute predictions for the halo mass function both for these simple models and also for comprehensive particle physics models of sterile neutrinos and dark acoustic oscillations. We show that the mass function fit of Lovell et al. underestimates the number of haloes less massive than the half-mode mass, $M_mathrm{hm}$ by a factor of 2, relative to the extended Press-Schechter (EPS) method. The alternative approach of applying EPS to the Viel et al. matter power spectrum fit instead suggests good agreement at $M_mathrm{hm}$ relative to the comprehensive model matter power spectra results, although the number of haloes with mass $<M_mathrm{hm}$ is still suppressed due to the absence of small scale power in the fitting function. Overall, we find that the number of dark matter haloes with masses $<10^{8}M_{odot}$ predicted by competitive particle physics models is underestimated by a factor of $sim2$ when applying popular fitting functions, although careful studies that follow the stripping and destruction of subhaloes will be required in order to draw robust conclusions.
We argue that the acoustic damping of the matter power spectrum is not a generic feature of the kinetic decoupling of dark matter, but even the enhancement can be realized depending on the nature of the kinetic decoupling when compared to that in the standard cold dark matter model. We consider a model that exhibits a ${it sudden}$ kinetic decoupling and investigate cosmological perturbations in the ${it standard}$ cosmological background numerically in the model. We also give an analytic discussion in a simplified setup. Our results indicate that the nature of the kinetic decoupling could have a great impact on small scale density perturbations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا