Do you want to publish a course? Click here

Finite $N$ corrections to the superconformal index of toric quiver gauge theories

87   0   0.0 ( 0 )
 Added by Tatsuya Mori
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The superconformal index of quiver gauge theories realized on D3-branes in toric Calabi-Yau cones is investigated. We use the AdS/CFT correspondence and study D3-branes wrapped on supersymmetric cycles. We focus on brane configurations in which a single D3-brane is wrapped on a cycle, and we do not take account of branes with multiple wrapping. We propose a formula that gives finite $N$ corrections to the index caused by such brane configurations. We compare the predictions of the formula for several examples with the results on the gauge theory side obtained by using localization for small size of gauge groups, and confirm that the formula correctly reproduces the finite $N$ corrections up to expected order.



rate research

Read More

We compute the planar limit of both the free energy and the expectation value of the $1/2$ BPS Wilson loop for four dimensional ${cal N}=2$ superconformal quiver theories, with a product of SU($N$)s as gauge group and bi-fundamental matter. Supersymmetric localization reduces the problem to a multi-matrix model, that we rewrite in the zero-instanton sector as an effective action involving an infinite number of double-trace terms, determined by the relevant extended Cartan matrix. We find that the results, as in the case of $mathcal{N}=2$ SCFTs with a simple gauge group, can be written as sums over tree graphs. For the $widehat{A_1}$ case, we find that the contribution of each tree can be interpreted as the partition function of a generalized Ising model defined on the tree; we conjecture that the partition functions of these models defined on trees satisfy the Lee-Yang property, i.e. all their zeros lie on the unit circle.
Reflexive polygons have been extensively studied in a variety of contexts in mathematics and physics. We generalize this programme by looking at the 45 different lattice polygons with two interior points up to SL(2,$mathbb{Z}$) equivalence. Each corresponds to some affine toric 3-fold as a cone over a Sasaki-Einstein 5-fold. We study the quiver gauge theories of D3-branes probing these cones, which coincide with the mesonic moduli space. The minimum of the volume function of the Sasaki-Einstein base manifold plays an important role in computing the R-charges. We analyze these minimized volumes with respect to the topological quantities of the compact surfaces constructed from the polygons. Unlike reflexive polytopes, one can have two fans from the two interior points, and hence give rise to two smooth varieties after complete resolutions, leading to an interesting pair of closely related geometries and gauge theories.
Using the off-shell formulation for ${mathcal N}=2$ conformal supergravity in four dimensions, we propose superconformal higher-spin multiplets of conserved currents and their associated unconstrained gauge prepotentials. The latter are used to construct locally superconformal chiral actions, which are demonstrated to be gauge invariant in arbitrary conformally flat backgrounds.
We show that a proposed duality [arXiv:0711.0054] between infinitely coupled gauge theories and superconformal field theories (SCFTs) with weakly gauged flavor groups predicts the existence of new rank 1 SCFTs. These superconformal fixed point theories have the same Coulomb branch singularities as the rank 1 E_6, E_7, and E_8 SCFTs, but have smaller flavor symmetry algebras and different central charges. Gauging various subalgebras of the flavor algebras of these rank 1 SCFTs provides many examples of infinite-coupling dualities, satisfying an intricate set of consistency checks. They also provide examples of N=2 conformal theories with marginal couplings but no weak-coupling limits.
We study, using ADHM construction, instanton effects in an ${CN}=2$ superconformal $Sp(N)$ gauge theory, arising as effective field theory on a system of $N$ D-3-branes near an orientifold 7-plane and 8 D-7-branes in type I string theory. We work out the measure for the collective coordinates of multi-instantons in the gauge theory and compare with the measure for the collective coordinates of $(-1)$-branes in the presence of 3- and 7-branes in type I theory. We analyse the large-N limit of the measure and find that it admits two classes of saddle points: In the first class the space of collective coordinates has the geometry of $AdS_5times S^3$ which on the string theory side has the interpretation of the D-instantons being stuck on the 7-branes and therefore the resulting moduli space being $AdS_5times S^3$, In the second class the geometry is $AdS_5times S^5/Z_2$ and on the string theory side it means that the D-instantons are free to move in the 10-dimensional bulk. We discuss in detail a correlator of four O(8) flavour currents on the Yang-Mills side, which receives contributions from the first type of saddle points only, and show that it matches with the correlator obtained from $F^4$ coupling on the string theory side, which receives contribution from D-instantons, in perfect accord with the AdS/CFT correspondence. In particular we observe that the sectors with odd number of instantons give contribution to an O(8)-odd invariant coupling, thereby breaking O(8) down to SO(8) in type I string theory. We finally discuss correlators related to $R^4$, which receive contributions from both saddle points.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا