No Arabic abstract
We study, using ADHM construction, instanton effects in an ${CN}=2$ superconformal $Sp(N)$ gauge theory, arising as effective field theory on a system of $N$ D-3-branes near an orientifold 7-plane and 8 D-7-branes in type I string theory. We work out the measure for the collective coordinates of multi-instantons in the gauge theory and compare with the measure for the collective coordinates of $(-1)$-branes in the presence of 3- and 7-branes in type I theory. We analyse the large-N limit of the measure and find that it admits two classes of saddle points: In the first class the space of collective coordinates has the geometry of $AdS_5times S^3$ which on the string theory side has the interpretation of the D-instantons being stuck on the 7-branes and therefore the resulting moduli space being $AdS_5times S^3$, In the second class the geometry is $AdS_5times S^5/Z_2$ and on the string theory side it means that the D-instantons are free to move in the 10-dimensional bulk. We discuss in detail a correlator of four O(8) flavour currents on the Yang-Mills side, which receives contributions from the first type of saddle points only, and show that it matches with the correlator obtained from $F^4$ coupling on the string theory side, which receives contribution from D-instantons, in perfect accord with the AdS/CFT correspondence. In particular we observe that the sectors with odd number of instantons give contribution to an O(8)-odd invariant coupling, thereby breaking O(8) down to SO(8) in type I string theory. We finally discuss correlators related to $R^4$, which receive contributions from both saddle points.
We show that extremal correlators in all Lagrangian ${cal N}=2$ superconformal field theories with a simple gauge group are governed by the same universal Toda system of equations, which dictates the structure of extremal correlators to all orders in the perturbation series. A key point is the construction of a convenient orthogonal basis for the chiral ring, by arranging towers of operators in order of increasing dimension, which has the property that the associated two-point functions satisfy decoupled Toda chain equations. We explicitly verify this in all known SCFTs based on $mathrm{SU}(N)$ gauge groups as well as in superconformal QCD based on orthogonal and symplectic groups. As a by-product, we find a surprising non-renormalization property for the ${cal N}=2$ $mathrm{SU}(N)$ SCFT with one hypermultiplet in the rank-2 symmetric representation and one hypermultiplet in the rank-2 antisymmetric representation, where the two-loop terms of a large class of supersymmetric observables identically vanish.
We derive the exact supergravity profile for the twisted scalar field emitted by a system of fractional D3 branes at a Z2 orbifold singularity supporting N=2 quiver gauge theories with unitary groups and bifundamental matter. At the perturbative level this twisted field is dual to the gauge coupling but it is corrected non-perturbatively by an infinite tower of fractional D-instantons. The explicit microscopic description allows to derive the gravity profile from disk amplitudes computing the emission rate of the twisted scalar field in terms of chiral correlators in the dual gauge theory. We compute these quantum correlators using multi-instanton localization techniques and/or Seiberg-Witten analysis. Finally, we discuss a non-perturbative relation between the twisted scalar and the effective coupling of the gauge theory for some simple choices of the brane set ups.
We discuss the modular anomaly equation satisfied by the the prepotential of 4-dimensional N=2* theories and show that its validity is related to S-duality. The recursion relations that follow from the modular anomaly equation allow one to write the prepotential in terms of (quasi)-modular forms, thus resumming the instanton contributions. These results can be checked against the microscopic multi-instanton calculus in the case of classical algebras, but are valid also for the exceptional E6, E7, E8, F4 and G2 algebras, where direct computations are not available.
We investigate non-extremal D-instantons in an asymptotically $ AdS_5 times S^5$ background and the role they play in the $ AdS_5 / CFT_4$ correspondence. We find that the holographic dual operators of non-extremal D-instanton configurations do not correspond to self-dual Yang-Mills instantons, and we compute explicitly the deviation from self-duality. Furthermore, a class of non-extremal D-instantons yield Euclidean axionic wormhole solutions with two asymptotic boundaries. After Wick rotating, this provides a playground for investigating holography in the presence of cosmological singularities in a closed universe.
Aharony, Bergman, Jafferis and Maldacena have recently proposed a dual gravitational description for a family of superconformal Chern Simons theories in three spacetime dimensions. In this note we perform the one loop computation that determines the field theory superconformal index of this theory and compare with the index computed over the Fock space of dual supersymmetric gravitons. In the appropriate limit (large $N$ and large $k$) we find a perfect match.