Do you want to publish a course? Click here

Detectability of SASI activity in supernova neutrino signals

57   0   0.0 ( 0 )
 Added by Zidu Lin
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a novel methodology for establishing the presence of Standing Accretion Shock Instabilities (SASI) in the dynamics of a core collapse supernova from the observed neutrino event rate at water- or ice-based neutrino detectors. The methodology uses a likelihood ratio in the frequency domain as a test-statistics; it is also employed to assess the potential to estimate the frequency and the amplitude of the SASI modulations of the neutrino signal. The parameter estimation errors are consistent with the minimum possible errors as evaluated from the inverse of the Fisher information matrix, and close to the theoretical minimum for the SASI amplitude. Using results from a core-collapse simulation of a 15 solar-mass star by Kuroda $it {et, al.}$ (2017) as a test bed for the method, we find that SASI can be identified with high confidence for a distance to the supernova of up to $sim 6$ kpc for IceCube and and up to $sim 3$ kpc for a 0.4 Mt mass water Cherenkov detector. This methodology will aid the investigation of a future galactic supernova.



rate research

Read More

The relevance of the standing accretion shock instability (SASI) compared to neutrino-driven convection in three-dimensional (3D) supernova-core environments is still highly controversial. Studying a 27 Msun progenitor, we demonstrate, for the first time, that violent SASI activity can develop in 3D simulations with detailed neutrino transport despite the presence of convection. This result was obtained with the Prometheus-Vertex code with the same sophisticated neutrino treatment so far used only in 1D and 2D models. While buoyant plumes initially determine the nonradial mass motions in the postshock layer, bipolar shock sloshing with growing amplitude sets in during a phase of shock retraction and turns into a violent spiral mode whose growth is only quenched when the infall of the Si/SiO interface leads to strong shock expansion in response to a dramatic decrease of the mass accretion rate. In the phase of large-amplitude SASI sloshing and spiral motions, the postshock layer exhibits nonradial deformation dominated by the lowest-order spherical harmonics (l=1, m=0,-1,+1) in distinct contrast to the higher multipole structures associated with neutrino-driven convection. We find that the SASI amplitudes, shock asymmetry, and nonradial kinetic energy in 3D can exceed those of the corresponding 2D case during extended periods of the evolution. We also perform parametrized 3D simulations of a 25 Msun progenitor, using a simplified, gray neutrino transport scheme, an axis-free Yin-Yang grid, and different amplitudes of random seed perturbations. They confirm the importance of the SASI for another progenitor, its independence of the choice of spherical grid, and its preferred growth for fast accretion flows connected to small shock radii and compact proto-neutron stars as previously found in 2D setups.
159 - Takashi Yoshida 2011
We study electron-neutrino and electron-antineutrino signals from a supernova with strong magnetic field detected by a 100 kton liquid Ar detector. The change of neutrino flavors by resonant spin-flavor
We study theoretical neutrino signals from core-collapse supernova (CCSN) computed using axisymmetric CCSN simulations that cover the post-bounce phase up to $sim 4$~s. We provide basic quantities of the neutrino signals such as event rates, energy spectra, and cumulative number of events at some terrestrial neutrino detectors, and then discuss some new features in the late phase that emerge in our models. Contrary to popular belief, neutrino emissions in the late phase are not always steady, but rather have temporal fluctuations, the vigor of which hinges on the CCSN model and neutrino flavor. We find that such temporal variations are not primarily driven by proto-neutron star (PNS) convection, but by fallback accretion in exploding models. We assess the detectability of these temporal variations, and find that IceCube is the most promising detector with which to resolve them. We also update fitting formulae first proposed in our previous paper for which the total neutrino energy (TONE) emitted at the CCSN source is estimated from the cumulative number of events in each detector. This will be a powerful technique with which to analyze real observations, particularly for low-statistics data.
100 - A. Sheshukov 2021
Supernova neutrino detection in neutrino and dark matter experiments is usually implemented as a real-time trigger system based on counting neutrino interactions within a moving time window. The sensitivity reach of such experiments can be improved by taking into account the time profile of the expected signal. We propose a shape analysis of the incoming experimental data based on a log likelihood ratio variable containing the assumed signal shape. This approach also allows a combination of potential supernova signals in different detectors for a further sensitivity boost. The method is tested on the NOvA detectors to study their combined sensitivity to the core-collapse supernova signal, and also on KamLAND, Borexino and SK-Gd as potential detectors of presupernova neutrinos. Using the shape analysis enhances the signal significance for supernova detection and prediction, as well as the sensitivity reach of the experiment. It also extends the supernova prediction time when applied to the presupernova neutrino signal detection. Enhancements achieved with the shape analysis persist even in the case when the actual signal doesnt match the expected signal model.
64 - Haakon Andresen 2020
We compare gravitational-wave (GW) signals from eight three-dimensional simulations of core-collapse supernovae, using two different progenitors with zero-age main sequence masses of 9 and 20 solar masses. The collapse of each progenitor was simulated four times, at two different grid resolutions and with two different neutrino transport methods, using the Aenus-Alcar code. The main goal of this study is to assess the validity of recent concerns that the so-called Ray-by-Ray+ (RbR+) approximation is problematic in core-collapse simulations and can adversely affect theoretical GW predictions. Therefore, signals from simulations using RbR+ are compared to signals from corresponding simulations using a fully multidimensional (FMD) transport scheme. The 9 solar-mass progenitor successfully explodes, whereas the 20 solar-mass model does not. Both the standing accretion shock instability and hot-bubble convection develop in the postshock layer of the non-exploding models. In the exploding models, neutrino-driven convection in the postshock flow is established around 100 ms after core bounce and lasts until the onset of shock revival. We can, therefore, judge the impact of the numerical resolution and neutrino transport under all conditions typically seen in non-rotating core-collapse simulations. We find excellent qualitative agreement in all GW features. We find minor quantitative differences between simulations, but find no systematic differences between simulations using different transport schemes. Resolution-dependent differences in the hydrodynamic behaviour of low-resolution and high-resolution models have a greater impact on the GW signals than consequences of the different transport methods. Furthermore, increasing the resolution decreases the discrepancies between models with different neutrino transport.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا