No Arabic abstract
Supernova neutrino detection in neutrino and dark matter experiments is usually implemented as a real-time trigger system based on counting neutrino interactions within a moving time window. The sensitivity reach of such experiments can be improved by taking into account the time profile of the expected signal. We propose a shape analysis of the incoming experimental data based on a log likelihood ratio variable containing the assumed signal shape. This approach also allows a combination of potential supernova signals in different detectors for a further sensitivity boost. The method is tested on the NOvA detectors to study their combined sensitivity to the core-collapse supernova signal, and also on KamLAND, Borexino and SK-Gd as potential detectors of presupernova neutrinos. Using the shape analysis enhances the signal significance for supernova detection and prediction, as well as the sensitivity reach of the experiment. It also extends the supernova prediction time when applied to the presupernova neutrino signal detection. Enhancements achieved with the shape analysis persist even in the case when the actual signal doesnt match the expected signal model.
The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNEs ability to constrain the $ u_e$ spectral parameters of the neutrino burst will be considered.
We investigate different neutrino signals from the decay of dark matter particles to determine the prospects for their detection, and more specifically if any spectral signature can be disentangled from the background in present and future neutrino observatories. If detected, such a signal could bring an independent confirmation of the dark matter interpretation of the dramatic rise in the positron fraction above 10 GeV recently observed by the PAMELA satellite experiment and offer the possibility of distinguishing between astrophysical sources and dark matter decay or annihilation. In combination with other signals, it may also be possible to distinguish among different dark matter decay channels.
We optimize the third-generation gravitational-wave detector to maximize the range to detect core-collapse supernovae. Based on three-dimensional simulations for core-collapse and the corresponding gravitational-wave waveform emitted, the corresponding detection range for these waveforms is limited to within our galaxy even in the era of third-generation detectors. The corresponding event rate is two per century. We find from the waveforms that to detect core-collapse supernovae with an event rate of one per year, the gravitational-wave detectors need a strain sensitivity of 3$times10^{-27}~$Hz$^{-1/2}$ in a frequency range from 100~Hz to 1500~Hz. We also explore detector configurations technologically beyond the scope of third-generation detectors. We find with these improvements, the event rate for gravitational-wave observations from CCSN is still low, but is improved to one in twenty years.